{"title":"Optimizing synchronous systems","authors":"C. Leiserson, J. Saxe","doi":"10.1109/SFCS.1981.34","DOIUrl":null,"url":null,"abstract":"The complexity of integrated-circuit chips produced today makes it feasible to build inexpensive, special-purpose subsystems that rapidly solve sophisticated problems on behalf of a general-purpose host computer. This paper contributes to the design methodology of efficient VLSI algorithms. We present a transformation that converts synchronous systems into more time-efficient, systolic implementations by removing combinational rippling. The problem of determining the optimized system can be reduced to the graph-theoretic single-destination-shortest-paths problem. More importantly from an engineering standpoint, however, the kinds of rippling that can be removed from a circuit at essentially no cost can be easily characterized. For example, if the only global communication in a system is broadcasting from the host computer, the broadcast can always be replaced by local communication.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"503","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 503
Abstract
The complexity of integrated-circuit chips produced today makes it feasible to build inexpensive, special-purpose subsystems that rapidly solve sophisticated problems on behalf of a general-purpose host computer. This paper contributes to the design methodology of efficient VLSI algorithms. We present a transformation that converts synchronous systems into more time-efficient, systolic implementations by removing combinational rippling. The problem of determining the optimized system can be reduced to the graph-theoretic single-destination-shortest-paths problem. More importantly from an engineering standpoint, however, the kinds of rippling that can be removed from a circuit at essentially no cost can be easily characterized. For example, if the only global communication in a system is broadcasting from the host computer, the broadcast can always be replaced by local communication.