Predicting Collaborative Performance at Assessment Level using Machine Learning

S. A. Raza
{"title":"Predicting Collaborative Performance at Assessment Level using Machine Learning","authors":"S. A. Raza","doi":"10.1109/CAIS.2019.8769578","DOIUrl":null,"url":null,"abstract":"Most of the machine learning-based educational data mining (EDM) studies in university education merely focus on the predication of individual students' performance at institutional/program and course levels. To predict collaborative performance, this study demonstrates the application of a rough set theory-based machine learning technique at the assessment level of a university course. It unveils if-then rules comprising key factors affecting assessment scores and categorizes them into performance classes of ‘Low’, ‘Medium’ and ‘High’. The results are applicable in chalking out strategies related to teaching and student advising to improve academic performance.","PeriodicalId":220129,"journal":{"name":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIS.2019.8769578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most of the machine learning-based educational data mining (EDM) studies in university education merely focus on the predication of individual students' performance at institutional/program and course levels. To predict collaborative performance, this study demonstrates the application of a rough set theory-based machine learning technique at the assessment level of a university course. It unveils if-then rules comprising key factors affecting assessment scores and categorizes them into performance classes of ‘Low’, ‘Medium’ and ‘High’. The results are applicable in chalking out strategies related to teaching and student advising to improve academic performance.
使用机器学习预测评估级别的协作绩效
大多数基于机器学习的教育数据挖掘(EDM)研究在大学教育中仅仅关注于预测单个学生在机构/项目和课程水平上的表现。为了预测协作绩效,本研究展示了基于粗糙集理论的机器学习技术在大学课程评估层面的应用。它揭示了“如果-然后”规则,包括影响评估分数的关键因素,并将它们分为“低”、“中”和“高”三个等级。研究结果适用于制定与教学和学生建议有关的策略,以提高学习成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信