InMAF: indexing music databases via multiple acoustic features

Jialie Shen, J. Shepherd, A. Ngu
{"title":"InMAF: indexing music databases via multiple acoustic features","authors":"Jialie Shen, J. Shepherd, A. Ngu","doi":"10.1145/1142473.1142587","DOIUrl":null,"url":null,"abstract":"Music information processing has become very important due to the ever-growing amount of music data from emerging applications. In this demonstration,we present a novel approach for generating small but comprehensive music descriptors to facilitate efficient content music management (accessing and retrieval, in particular). Unlike previous approaches that rely on low-level spectral features adapted from speech analysis technology, our approach integrates human music perception to enhance the accuracy of the retrieval and classification process via PCA and neural networks. The superiority of our method is demonstrated by comparing it with state-of-the-art approaches in the areas of music classification query effectiveness, and robustness against various audio distortion/alternatives.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Music information processing has become very important due to the ever-growing amount of music data from emerging applications. In this demonstration,we present a novel approach for generating small but comprehensive music descriptors to facilitate efficient content music management (accessing and retrieval, in particular). Unlike previous approaches that rely on low-level spectral features adapted from speech analysis technology, our approach integrates human music perception to enhance the accuracy of the retrieval and classification process via PCA and neural networks. The superiority of our method is demonstrated by comparing it with state-of-the-art approaches in the areas of music classification query effectiveness, and robustness against various audio distortion/alternatives.
InMAF:通过多种声学特征索引音乐数据库
由于来自新兴应用程序的音乐数据量不断增长,音乐信息处理变得非常重要。在这个演示中,我们提出了一种新的方法来生成小而全面的音乐描述符,以促进有效的内容音乐管理(特别是访问和检索)。与以往依赖于语音分析技术的低水平频谱特征的方法不同,我们的方法集成了人类音乐感知,通过PCA和神经网络提高了检索和分类过程的准确性。通过将我们的方法与最先进的方法在音乐分类查询有效性和对各种音频失真/替代的鲁棒性方面进行比较,证明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信