No Place For Hate Speech @ AMI: Convolutional Neural Network and Word Embedding for the Identification of Misogyny in Italian (short paper)

Adriano dos S. R. da Silva, N. T. Roman
{"title":"No Place For Hate Speech @ AMI: Convolutional Neural Network and Word Embedding for the Identification of Misogyny in Italian (short paper)","authors":"Adriano dos S. R. da Silva, N. T. Roman","doi":"10.4000/books.aaccademia.6834","DOIUrl":null,"url":null,"abstract":"English. In this article, we describe two classification models (a Convolutional Neural Network and a Logistic Regression classifier), arranged according to three different strategies, submitted to subtask A of Automatic Misogyny Identification at EVALITA 2020. Results were very encouraging for detecting misogyny, even though aggressiveness was less accurate. Our second strategy, consisting of a Convolutional Neural Network and logistic regression to identify misogyny and aggressiveness, respectively, won the sixth place in the competition. Italiano. In questo articolo, descriviamo due modelli di classificazione (i.e., Convolutional Neural Network e Regressione Logistica), organizzati secondo tre diverse strategie, per il subtask A dello shared task Automatic Misogyny Identification a EVALITA 2020. I risultati sono stati molto incoraggianti nel rilevamento della misoginia, anche se l’aggressività viene riconosciuta con una precisione più basse. La nostra seconda strategia (Convolutional Neural Network per misoginia e Regressione Logistica per aggressività) ci ha permesso di ottenere il sesto posto","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.6834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

English. In this article, we describe two classification models (a Convolutional Neural Network and a Logistic Regression classifier), arranged according to three different strategies, submitted to subtask A of Automatic Misogyny Identification at EVALITA 2020. Results were very encouraging for detecting misogyny, even though aggressiveness was less accurate. Our second strategy, consisting of a Convolutional Neural Network and logistic regression to identify misogyny and aggressiveness, respectively, won the sixth place in the competition. Italiano. In questo articolo, descriviamo due modelli di classificazione (i.e., Convolutional Neural Network e Regressione Logistica), organizzati secondo tre diverse strategie, per il subtask A dello shared task Automatic Misogyny Identification a EVALITA 2020. I risultati sono stati molto incoraggianti nel rilevamento della misoginia, anche se l’aggressività viene riconosciuta con una precisione più basse. La nostra seconda strategia (Convolutional Neural Network per misoginia e Regressione Logistica per aggressività) ci ha permesso di ottenere il sesto posto
没有仇恨言论的地方@ AMI:卷积神经网络和词嵌入识别意大利语中的厌女症(短文)
English。在这篇文章中,我们描述了两种不同的分类模式,同意了三种不同的策略,承诺在2020年进行自动歧视女性识别子任务。结果对检测厌女症非常有吸引力,即使攻击性更小。我们的第二项战略是建立一个扭曲的神经网络和物流倒退,以识别厌恶女性和侵略性,尊重,赢得比赛的第六个位置。意大利。在这篇文章中,我们描述了两种分类模型(人工智能、Convolutional神经网络和物流回归),根据三种不同的策略组织起来,为共享的、自动化的、厌恶女性的身份识别子任务组(evita 2020)。在发现厌女症方面,结果非常令人鼓舞,尽管人们对攻击性的认识较低。我们的第二种策略(针对女性歧视和攻击性行为的阴谋神经网络)使我们排在第六位
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信