Legal docket-entry classification

Ramesh Nallapati, Christopher D. Manning
{"title":"Legal docket-entry classification","authors":"Ramesh Nallapati, Christopher D. Manning","doi":"10.3115/1613715.1613771","DOIUrl":null,"url":null,"abstract":"We investigate the problem of binary text classification in the domain of legal docket entries. This work presents an illustrative instance of a domain-specific problem where the state-of-the-art Machine Learning (ML) classifiers such as SVMs are inadequate. Our investigation into the reasons for the failure of these classifiers revealed two types of prominent errors which we call conjunctive and disjunctive errors. We developed simple heuristics to address one of these error types and improve the performance of the SVMs. Based on the intuition gained from our experiments, we also developed a simple propositional logic based classifier using hand-labeled features, that addresses both types of errors simultaneously. We show that this new, but simple, approach outperforms all existing state-of-the-art ML models, with statistically significant gains. We hope this work serves as a motivating example of the need to build more expressive classifiers beyond the standard model classes, and to address text classification problems in such non-traditional domains.","PeriodicalId":216865,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP '08","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP '08","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1613715.1613771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We investigate the problem of binary text classification in the domain of legal docket entries. This work presents an illustrative instance of a domain-specific problem where the state-of-the-art Machine Learning (ML) classifiers such as SVMs are inadequate. Our investigation into the reasons for the failure of these classifiers revealed two types of prominent errors which we call conjunctive and disjunctive errors. We developed simple heuristics to address one of these error types and improve the performance of the SVMs. Based on the intuition gained from our experiments, we also developed a simple propositional logic based classifier using hand-labeled features, that addresses both types of errors simultaneously. We show that this new, but simple, approach outperforms all existing state-of-the-art ML models, with statistically significant gains. We hope this work serves as a motivating example of the need to build more expressive classifiers beyond the standard model classes, and to address text classification problems in such non-traditional domains.
法律摘要分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信