Yi Liu, Yu Cui, Will N. Browne, Bing Xue, Wen Cheng, Yong Li, Lingfang Zeng
{"title":"Absumption and Subsumption based Learning Classifier System for Real-World Continuous-based Problems","authors":"Yi Liu, Yu Cui, Will N. Browne, Bing Xue, Wen Cheng, Yong Li, Lingfang Zeng","doi":"10.1145/3583133.3590564","DOIUrl":null,"url":null,"abstract":"Learning Classifier Systems (LCSs), a series of rules-based evolutionary computation techniques, which have solved a wide range of discrete-feature-based applications over their 40 years of history. Yet, adapting LCSs to complicated continuous-feature-based domains is still an unsolved challenge. This paper proposes new LCS methods specialized for continuous problems. Concretely, phenotype-orientated Absumption, Subsumption, and Mutation are proposed and employed to form and revise rules directly in a single iteration according to the target problems' inherent data distribution, allowing rules to be released from the burden of directly carrying the information of previous instances. Furthermore, a novel representation format supporting fine-grained generalization degree modification is also proposed. Experiments demonstrate for the first time that LCSs are promising techniques in efficiently producing models with satisfactory prediction performance for complicated continuous problems.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Learning Classifier Systems (LCSs), a series of rules-based evolutionary computation techniques, which have solved a wide range of discrete-feature-based applications over their 40 years of history. Yet, adapting LCSs to complicated continuous-feature-based domains is still an unsolved challenge. This paper proposes new LCS methods specialized for continuous problems. Concretely, phenotype-orientated Absumption, Subsumption, and Mutation are proposed and employed to form and revise rules directly in a single iteration according to the target problems' inherent data distribution, allowing rules to be released from the burden of directly carrying the information of previous instances. Furthermore, a novel representation format supporting fine-grained generalization degree modification is also proposed. Experiments demonstrate for the first time that LCSs are promising techniques in efficiently producing models with satisfactory prediction performance for complicated continuous problems.