Classification of Phonocardiogram Recordings Using Vision Transformer Architecture

Joonyeob Kim, Gibeom Park, B. Suh
{"title":"Classification of Phonocardiogram Recordings Using Vision Transformer Architecture","authors":"Joonyeob Kim, Gibeom Park, B. Suh","doi":"10.22489/CinC.2022.084","DOIUrl":null,"url":null,"abstract":"We participated in the George B. Moody Challenge 2022 to make a model which detects the presence or absence of murmurs from multiple heart sound recordings from multiple auscultation locations, as well as detecting the clinical outcomes from phonocardiogram (PCG) well. Our team, HCCL, developed a model with a visual approach for deriving a high-performance model. The model converts heart sound signals into spectrograms without requiring resampling or signal filtering. The result shows a weighted accuracy score of 0.69 (ranked 21th out of 40 teams) for the murmur detection classification on the hidden test data. For the clinical outcome identification task on the hidden test data, it shows a Challenge cost score of 11943 (ranked 6th out of 39 teams)","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We participated in the George B. Moody Challenge 2022 to make a model which detects the presence or absence of murmurs from multiple heart sound recordings from multiple auscultation locations, as well as detecting the clinical outcomes from phonocardiogram (PCG) well. Our team, HCCL, developed a model with a visual approach for deriving a high-performance model. The model converts heart sound signals into spectrograms without requiring resampling or signal filtering. The result shows a weighted accuracy score of 0.69 (ranked 21th out of 40 teams) for the murmur detection classification on the hidden test data. For the clinical outcome identification task on the hidden test data, it shows a Challenge cost score of 11943 (ranked 6th out of 39 teams)
使用视觉转换器架构的心音记录分类
我们参加了乔治·b·穆迪挑战2022,制作了一个模型,该模型可以从多个听诊位置的多个心音记录中检测杂音的存在或不存在,并可以很好地检测心音图(PCG)的临床结果。我们的团队,HCCL,开发了一个具有可视化方法的模型,用于推导高性能模型。该模型将心音信号转换为频谱图,而不需要重新采样或信号滤波。结果显示,对隐藏测试数据进行杂音检测分类的加权准确率得分为0.69(在40支队伍中排名第21)。对于隐藏测试数据的临床结果识别任务,挑战成本得分为11943(在39个团队中排名第6)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信