A Novel Simulator Using Minimal Resource Allocation Network and Its Application in Industrial Methanol Oxidation to Formaldehyde

S. Deepa, S. Venkatesan
{"title":"A Novel Simulator Using Minimal Resource Allocation Network and Its Application in Industrial Methanol Oxidation to Formaldehyde","authors":"S. Deepa, S. Venkatesan","doi":"10.1109/PACC.2011.5979033","DOIUrl":null,"url":null,"abstract":"A simulator in order to calculate the rate of the reaction in the methanol oxidation to formaldehyde process is presented in this paper. Here the Radial Basis Function Network is used to model the process. To choose an optimum number of hidden neuron we use an algorithm called Minimal Resource allocation Network. It recruits hidden neuron based on the novelty of the input data. The training data were obtained from a model available in literature. The network is trained with the literature data and the resulted model gives a good prediction of rate of reaction of formaldehyde formation.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5979033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A simulator in order to calculate the rate of the reaction in the methanol oxidation to formaldehyde process is presented in this paper. Here the Radial Basis Function Network is used to model the process. To choose an optimum number of hidden neuron we use an algorithm called Minimal Resource allocation Network. It recruits hidden neuron based on the novelty of the input data. The training data were obtained from a model available in literature. The network is trained with the literature data and the resulted model gives a good prediction of rate of reaction of formaldehyde formation.
一种基于最小资源分配网络的模拟器及其在工业甲醇氧化制甲醛中的应用
本文介绍了一种模拟甲醇氧化制甲醛反应速率的方法。这里使用径向基函数网络对过程进行建模。为了选择最优数量的隐藏神经元,我们使用最小资源分配网络算法。它根据输入数据的新颖性来招募隐藏神经元。训练数据来自文献中可用的模型。用文献数据对网络进行训练,得到的模型能很好地预测甲醛生成的反应速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信