Effluent ammonia nitrogen prediction of wastewater treatment process via Tikhonov regularized echo state network

Lei Wang, Jing Zhao, Zhiqiang Hu, Yaping Li
{"title":"Effluent ammonia nitrogen prediction of wastewater treatment process via Tikhonov regularized echo state network","authors":"Lei Wang, Jing Zhao, Zhiqiang Hu, Yaping Li","doi":"10.1109/yac57282.2022.10023746","DOIUrl":null,"url":null,"abstract":"To predict the effluent ammonia nitrogen $(NH_{4}-N)$, a Tikhonov regularized echo state network (TRESN) is proposed. TRESN uses the Tikhonov regularization method instead of linear regression to train the model, and transforms the selection of Tikhonov regularization parameters into a statistical inference of hyperparameters. The simulation results show that TRESN can well solve effluent $NH_{4}-N$ prediction compared with other ESNs, also has higher prediction accuracy and generalization ability.","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/yac57282.2022.10023746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To predict the effluent ammonia nitrogen $(NH_{4}-N)$, a Tikhonov regularized echo state network (TRESN) is proposed. TRESN uses the Tikhonov regularization method instead of linear regression to train the model, and transforms the selection of Tikhonov regularization parameters into a statistical inference of hyperparameters. The simulation results show that TRESN can well solve effluent $NH_{4}-N$ prediction compared with other ESNs, also has higher prediction accuracy and generalization ability.
基于吉洪诺夫正则化回波状态网络的污水处理过程出水氨氮预测
为了预测出水氨氮$(NH_{4}-N)$,提出了一种吉洪诺夫正则化回波状态网络(TRESN)。TRESN使用Tikhonov正则化方法代替线性回归对模型进行训练,并将Tikhonov正则化参数的选择转化为超参数的统计推断。仿真结果表明,与其他esn相比,TRESN能较好地解决出水$NH_{4}-N$的预测问题,具有更高的预测精度和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信