{"title":"Some new subclasses of systems having a common quadratic Lyapunov function and comparison of known subclasses","authors":"Y. Mori, T. Mori, Y. Kuroe","doi":"10.1109/CDC.2001.980578","DOIUrl":null,"url":null,"abstract":"A common quadratic Lyapunov function (CQLF) guarantees the asymptotic stability of a set of systems. A complete characterization of the set of systems with such a property have been unsuccessful (except for second-order systems). Thus, for both the continuous-time and discrete-time cases, several subsets of linear systems which have a CQLF are known. Some results indicate that there is a parallelism between the continuous-time case and the discrete-time case. In this paper, we show a new subclass for continuous-time systems which have a CQLF by using a property of M-matrices. We also show the discrete-time counterpart of the above new subclass. Next, it is shown that the whole class of continuous-time linear systems having a CQLF is connected directly with its discrete-time counterpart by using a bilinear transformation. For some known subclasses of systems having a CQLF, the transformation gives a one-to-one correspondence between the continuous-time and discrete-time cases. We further show relationships among the obtained results and other, known results.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A common quadratic Lyapunov function (CQLF) guarantees the asymptotic stability of a set of systems. A complete characterization of the set of systems with such a property have been unsuccessful (except for second-order systems). Thus, for both the continuous-time and discrete-time cases, several subsets of linear systems which have a CQLF are known. Some results indicate that there is a parallelism between the continuous-time case and the discrete-time case. In this paper, we show a new subclass for continuous-time systems which have a CQLF by using a property of M-matrices. We also show the discrete-time counterpart of the above new subclass. Next, it is shown that the whole class of continuous-time linear systems having a CQLF is connected directly with its discrete-time counterpart by using a bilinear transformation. For some known subclasses of systems having a CQLF, the transformation gives a one-to-one correspondence between the continuous-time and discrete-time cases. We further show relationships among the obtained results and other, known results.