4-Free Strong Digraphs with the Maximum Size

Qifan Zhang, Liqiong Xu, Yuqing Lin
{"title":"4-Free Strong Digraphs with the Maximum Size","authors":"Qifan Zhang, Liqiong Xu, Yuqing Lin","doi":"10.1142/s0129626423500044","DOIUrl":null,"url":null,"abstract":"Directed cycles in digraphs are useful in embedding linear arrays and rings, and are suitable for designing simple algorithm with low communication costs in parallel computer systems, thus the existence of directed cycles on digraphs has been largely investigated. Let [Formula: see text], [Formula: see text] be integers. Bermond et al. [Journal of Graph Theory 4(3) (1980) 337–341] proved that if the size of a strong digraph [Formula: see text] with order [Formula: see text] is at least [Formula: see text], then the girth of [Formula: see text] is no more than [Formula: see text]. Consequently, when [Formula: see text] is a 4-free strong digraph with order [Formula: see text], which means that every directed cycle in [Formula: see text] has length at least [Formula: see text], then the maximum size of [Formula: see text] is [Formula: see text]. In this paper, we mainly give the structural characterizations for all 4-free strong digraphs of order [Formula: see text] whose arc number exactly is [Formula: see text].","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626423500044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Directed cycles in digraphs are useful in embedding linear arrays and rings, and are suitable for designing simple algorithm with low communication costs in parallel computer systems, thus the existence of directed cycles on digraphs has been largely investigated. Let [Formula: see text], [Formula: see text] be integers. Bermond et al. [Journal of Graph Theory 4(3) (1980) 337–341] proved that if the size of a strong digraph [Formula: see text] with order [Formula: see text] is at least [Formula: see text], then the girth of [Formula: see text] is no more than [Formula: see text]. Consequently, when [Formula: see text] is a 4-free strong digraph with order [Formula: see text], which means that every directed cycle in [Formula: see text] has length at least [Formula: see text], then the maximum size of [Formula: see text] is [Formula: see text]. In this paper, we mainly give the structural characterizations for all 4-free strong digraphs of order [Formula: see text] whose arc number exactly is [Formula: see text].
4个最大大小的免费强有向图
有向图上的有向环用于嵌入线性阵列和环,并且适合设计并行计算机系统中通信成本低的简单算法,因此对有向图上的有向环的存在性进行了大量的研究。设[公式:见文],[公式:见文]为整数。Bermond等[Journal of Graph Theory 4(3)(1980) 337-341]证明了如果有序的强有向图[公式:见文]的大小至少为[公式:见文],则[公式:见文]的周长不大于[公式:见文]。因此,当[Formula: see text]是一个顺序为[Formula: see text]的4-free强有向图时,这意味着[Formula: see text]中的每个有向循环的长度至少为[Formula: see text],则[Formula: see text]的最大大小为[Formula: see text]。本文主要给出了所有阶[公式:见文]且弧数恰好为[公式:见文]的4-自由强有向图的结构刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信