Continuations may be unreasonable

A. Meyer, J. Riecke
{"title":"Continuations may be unreasonable","authors":"A. Meyer, J. Riecke","doi":"10.1145/62678.62685","DOIUrl":null,"url":null,"abstract":"We show that two lambda calculus terms can be observationally congruent (i.e., agree in all contexts) but their continuation-passing transforms may not be. We also show that two terms may be congruent in all untyped contexts but fail to be congruent in a calculus with call/cc operators. Hence, familiar reasoning about functional terms may be unsound if the terms use continuations explicitly or access them implicitly through new operators. We then examine one method of connecting terms with their continuized form, extending the work of Meyer and Wand [8].","PeriodicalId":119710,"journal":{"name":"Proceedings of the 1988 ACM conference on LISP and functional programming","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1988 ACM conference on LISP and functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62678.62685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We show that two lambda calculus terms can be observationally congruent (i.e., agree in all contexts) but their continuation-passing transforms may not be. We also show that two terms may be congruent in all untyped contexts but fail to be congruent in a calculus with call/cc operators. Hence, familiar reasoning about functional terms may be unsound if the terms use continuations explicitly or access them implicitly through new operators. We then examine one method of connecting terms with their continuized form, extending the work of Meyer and Wand [8].
延期可能是不合理的
我们证明了两个λ微积分项可以在观测上一致(即,在所有上下文中一致),但它们的连续传递变换可能不是。我们还证明了两个项在所有非类型化上下文中可能是一致的,但在具有call/cc操作符的演算中却不能是一致的。因此,如果术语显式地使用延续或通过new操作符隐式地访问它们,那么关于函数术语的熟悉推理可能是不合理的。然后,我们研究了一种将项与其连续形式联系起来的方法,扩展了Meyer和Wand[8]的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信