Learning and caricaturing the face space using self-organization and Hebbian learning for face processing

Albert Pujol, J. Villanueva, H. Wechsler
{"title":"Learning and caricaturing the face space using self-organization and Hebbian learning for face processing","authors":"Albert Pujol, J. Villanueva, H. Wechsler","doi":"10.1109/ICIAP.2001.957021","DOIUrl":null,"url":null,"abstract":"This paper shows a self-organized system designed to obtain compressed representations of instances of a population of visual forms. It is shown how, when applied to face shape information, the system evolves into a prototype of the population and induces automatic warping, or caricaturing, transformations where geometrical differences between forms are increased, improving, as a consequence, recognition performance. In this way, the proposed system provides a unified account for the whole chain of face processing tasks including data compression, detection, and recognition. Experimental data is presented to show the feasibility of our approach in terms of performance and robustness to changes in illumination and face expressions.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper shows a self-organized system designed to obtain compressed representations of instances of a population of visual forms. It is shown how, when applied to face shape information, the system evolves into a prototype of the population and induces automatic warping, or caricaturing, transformations where geometrical differences between forms are increased, improving, as a consequence, recognition performance. In this way, the proposed system provides a unified account for the whole chain of face processing tasks including data compression, detection, and recognition. Experimental data is presented to show the feasibility of our approach in terms of performance and robustness to changes in illumination and face expressions.
利用自组织和Hebbian学习进行人脸空间的学习和漫画化
这篇论文展示了一个自组织系统,它被设计用来获得一群视觉形式实例的压缩表示。当应用于面部形状信息时,该系统如何演变成人口的原型,并诱导自动扭曲或漫画化,其中形状之间的几何差异增加,从而提高识别性能。通过这种方式,该系统为包括数据压缩、检测和识别在内的整个人脸处理任务链提供了一个统一的帐户。实验数据显示了我们的方法在性能和对光照和面部表情变化的鲁棒性方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信