{"title":"Interpretable Multimodal Deception Detection in Videos","authors":"Hamid Karimi","doi":"10.1145/3242969.3264967","DOIUrl":null,"url":null,"abstract":"There are various real-world applications such as video ads, airport screenings, courtroom trials, and job interviews where deception detection can play a crucial role. Hence, there are immense demands on deception detection in videos. Videos contain rich information including acoustic, visual, temporal, and/or linguistic information, which provides great opportunities for advanced deception detection. However, videos are inherently complex; moreover, they lack detective labels in many real-world applications, which poses tremendous challenges to traditional deception detection. In this manuscript, I present my Ph.D. research on the problem of deception detection in videos. In particular, I provide a principled way to capture rich information into a coherent model and propose an end-to-end framework DEV to detect DEceptive Videos automatically. Preliminary results on real-world videos demonstrate the effectiveness of the proposed framework.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
There are various real-world applications such as video ads, airport screenings, courtroom trials, and job interviews where deception detection can play a crucial role. Hence, there are immense demands on deception detection in videos. Videos contain rich information including acoustic, visual, temporal, and/or linguistic information, which provides great opportunities for advanced deception detection. However, videos are inherently complex; moreover, they lack detective labels in many real-world applications, which poses tremendous challenges to traditional deception detection. In this manuscript, I present my Ph.D. research on the problem of deception detection in videos. In particular, I provide a principled way to capture rich information into a coherent model and propose an end-to-end framework DEV to detect DEceptive Videos automatically. Preliminary results on real-world videos demonstrate the effectiveness of the proposed framework.