A Novel Distribution Circuit Reconfiguration for Loss Minima With Symbiotic Organism Search Algorithm

S. Venkatesh, G. Gokulakrishnan, K. S. Kumar, N. Murali
{"title":"A Novel Distribution Circuit Reconfiguration for Loss Minima With Symbiotic Organism Search Algorithm","authors":"S. Venkatesh, G. Gokulakrishnan, K. S. Kumar, N. Murali","doi":"10.1109/ICPEA.2019.8818519","DOIUrl":null,"url":null,"abstract":"The work gives a novel evolutionary technique for the re-configuration test IEEE systems. The framework applied for optimization is Symbiotic Organism Search Algorithm (SOSA). The aim is to find optimal reconfiguration and to improve the active loss in the consumer side. This approach is examined on 16 and 33 IEEE test circuits. The results shows a valid improvement of active losses. The time required for execution is less when compared to other approaches.","PeriodicalId":427328,"journal":{"name":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEA.2019.8818519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The work gives a novel evolutionary technique for the re-configuration test IEEE systems. The framework applied for optimization is Symbiotic Organism Search Algorithm (SOSA). The aim is to find optimal reconfiguration and to improve the active loss in the consumer side. This approach is examined on 16 and 33 IEEE test circuits. The results shows a valid improvement of active losses. The time required for execution is less when compared to other approaches.
一种基于共生生物搜索算法的损耗最小配电电路重构
该工作为重构测试系统提供了一种新的进化技术。优化应用的框架是共生生物搜索算法(SOSA)。其目的是找到最佳的重新配置,并改善消费者端的主动损耗。该方法在16和33 IEEE测试电路上进行了测试。结果表明,有源损耗得到了有效的改善。与其他方法相比,执行所需的时间更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信