Temporal analysis for land mine detection

A. Linderhead, S. Sjokvist, S. Nyberg, M. Uppsall, C. Gronwall, P. Andersson, D. Letalick
{"title":"Temporal analysis for land mine detection","authors":"A. Linderhead, S. Sjokvist, S. Nyberg, M. Uppsall, C. Gronwall, P. Andersson, D. Letalick","doi":"10.1109/ISPA.2005.195443","DOIUrl":null,"url":null,"abstract":"In this paper the FOI temporal analysis method is presented and tested on images randomly chosen from a diurnal sequence. The method integrates data collection, both sensor images and weather, as well as modelling, with the signal processing detection methods. The detection methods presented show that mines can be detected using optical methods, even when the image sequence show very little contrast. Increasing the number of data collection times affects the detection rate and false alarm rate in a positive way. The result from the test with randomly chosen images show performance better than random for all of the tested cases, excellent for some cases. Using prior knowledge in the choice of time of data collection, the result from testing the method on real mine field data shows interesting result.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper the FOI temporal analysis method is presented and tested on images randomly chosen from a diurnal sequence. The method integrates data collection, both sensor images and weather, as well as modelling, with the signal processing detection methods. The detection methods presented show that mines can be detected using optical methods, even when the image sequence show very little contrast. Increasing the number of data collection times affects the detection rate and false alarm rate in a positive way. The result from the test with randomly chosen images show performance better than random for all of the tested cases, excellent for some cases. Using prior knowledge in the choice of time of data collection, the result from testing the method on real mine field data shows interesting result.
用于地雷探测的时间分析
本文提出了FOI时间分析方法,并对随机选取的日序列图像进行了测试。该方法将传感器图像和天气的数据收集以及建模与信号处理检测方法相结合。所提出的检测方法表明,即使在图像序列对比度很小的情况下,也可以使用光学方法检测地雷。增加数据采集次数对检测率和虚警率有积极影响。使用随机选择的图像进行测试的结果显示,在所有测试用例中,性能都优于随机测试,在某些情况下非常出色。将先验知识应用于数据采集时间的选择中,在实际井田数据上的测试结果显示出有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信