水文大数据共享平台研究与设计 Research and Design of Hydrological Big Data Sharing Platform

陈华, 徐坚, 肖志远, 杨家伟, 陈杰, 郭生练, 许崇育
{"title":"水文大数据共享平台研究与设计 Research and Design of Hydrological Big Data Sharing Platform","authors":"陈华, 徐坚, 肖志远, 杨家伟, 陈杰, 郭生练, 许崇育","doi":"10.12677/JWRR.2018.71002","DOIUrl":null,"url":null,"abstract":"本文根据水文数据的特点探讨了水文大数据标准化方法,探索数据预处理、数据索引、数据高效存储等水文大数据共享平台关键技术;利用Hadoop对多源异构数据的海量存储能力及高速计算能力,研究基于MapReduce的水文大数据分布式数据处理模型,设计和实现水文大数据共享平台,为水利及跨行业跨部门的信息共享、空间集成,以及跨学科的可持续发展研究提供技术支撑。 In this paper, the methodology of hydrological big data standardization is discussed upon analyzing on the characteristics of hydrological data. Solutions on data preprocessing, data indexing and highly effi-cient data reading and writing are also introduced. The mass storage capacity and high speed computing capability of Hadoop are utilized for designing and implementing hydrological big data sharing platform. Accordingly, the platform can be technical support for information sharing and space integration between water conservancy industry and other industries, as well as the interdisciplinary sustainable development.","PeriodicalId":349946,"journal":{"name":"Journal of Water Resources Research","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/JWRR.2018.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

本文根据水文数据的特点探讨了水文大数据标准化方法,探索数据预处理、数据索引、数据高效存储等水文大数据共享平台关键技术;利用Hadoop对多源异构数据的海量存储能力及高速计算能力,研究基于MapReduce的水文大数据分布式数据处理模型,设计和实现水文大数据共享平台,为水利及跨行业跨部门的信息共享、空间集成,以及跨学科的可持续发展研究提供技术支撑。 In this paper, the methodology of hydrological big data standardization is discussed upon analyzing on the characteristics of hydrological data. Solutions on data preprocessing, data indexing and highly effi-cient data reading and writing are also introduced. The mass storage capacity and high speed computing capability of Hadoop are utilized for designing and implementing hydrological big data sharing platform. Accordingly, the platform can be technical support for information sharing and space integration between water conservancy industry and other industries, as well as the interdisciplinary sustainable development.
水文大数据共享平台研究与设计 Research and Design of Hydrological Big Data Sharing Platform
本文根据水文数据的特点探讨了水文大数据标准化方法,探索数据预处理、数据索引、数据高效存储等水文大数据共享平台关键技术;利用Hadoop对多源异构数据的海量存储能力及高速计算能力,研究基于MapReduce的水文大数据分布式数据处理模型,设计和实现水文大数据共享平台,为水利及跨行业跨部门的信息共享、空间集成,以及跨学科的可持续发展研究提供技术支撑。 In this paper, the methodology of hydrological big data standardization is discussed upon analyzing on the characteristics of hydrological data. Solutions on data preprocessing, data indexing and highly effi-cient data reading and writing are also introduced. The mass storage capacity and high speed computing capability of Hadoop are utilized for designing and implementing hydrological big data sharing platform. Accordingly, the platform can be technical support for information sharing and space integration between water conservancy industry and other industries, as well as the interdisciplinary sustainable development.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信