{"title":"Fundamental Limits of Approximate Gradient Coding","authors":"Sinong Wang, Jiashang Liu, N. Shroff","doi":"10.1145/3393691.3394188","DOIUrl":null,"url":null,"abstract":"In the distributed graident coding problem, it has been established that, to exactly recover the gradient under s slow machines, the mmimum computation load (number of stored data partitions) of each worker is at least linear ($s+1$), which incurs a large overhead when s is large[13]. In this paper, we focus on approximate gradient coding that aims to recover the gradient with bounded error ε. Theoretically, our main contributions are three-fold: (i) we analyze the structure of optimal gradient codes, and derive the information-theoretical lower bound of minimum computation load: O(log(n)/log(n/s)) for ε = 0 and d≥ O(log(1/ε)/log(n/s)) for ε>0, where d is the computation load, and ε is the error in the gradient computation; (ii) we design two approximate gradient coding schemes that exactly match such lower bounds based on random edge removal process; (iii) we implement our schemes and demonstrate the advantage of the approaches over the current fastest gradient coding strategies. The proposed schemes provide order-wise improvement over the state of the art in terms of computation load, and are also optimal in terms of both computation load and latency.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the distributed graident coding problem, it has been established that, to exactly recover the gradient under s slow machines, the mmimum computation load (number of stored data partitions) of each worker is at least linear ($s+1$), which incurs a large overhead when s is large[13]. In this paper, we focus on approximate gradient coding that aims to recover the gradient with bounded error ε. Theoretically, our main contributions are three-fold: (i) we analyze the structure of optimal gradient codes, and derive the information-theoretical lower bound of minimum computation load: O(log(n)/log(n/s)) for ε = 0 and d≥ O(log(1/ε)/log(n/s)) for ε>0, where d is the computation load, and ε is the error in the gradient computation; (ii) we design two approximate gradient coding schemes that exactly match such lower bounds based on random edge removal process; (iii) we implement our schemes and demonstrate the advantage of the approaches over the current fastest gradient coding strategies. The proposed schemes provide order-wise improvement over the state of the art in terms of computation load, and are also optimal in terms of both computation load and latency.