Using Linked Data in the Data Integration for Maternal and Infant Death Risk of the SUS in the GISSA Project

Renato Freitas, C. Rocha, O. Braga, Gabriel Lopes, Odorico Monteiro, Mauro Oliveira
{"title":"Using Linked Data in the Data Integration for Maternal and Infant Death Risk of the SUS in the GISSA Project","authors":"Renato Freitas, C. Rocha, O. Braga, Gabriel Lopes, Odorico Monteiro, Mauro Oliveira","doi":"10.1145/3126858.3131606","DOIUrl":null,"url":null,"abstract":"Making good governance decisions is a constant challenge for Public Health administration. Health managers need to make data analysis in order to identify several health problems. In Brazil, these data are made available by DATASUS. Generally, they are stored in distinct and heterogeneous databases. TheLinked Data approach allow a homogenized view of the data as a unique basis. This article proposes a ontology-based model andLinked Data to integrate datasets and calculate the probability of maternal and infant death risk in order to give support in decision-making in the GISSA project.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3131606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Making good governance decisions is a constant challenge for Public Health administration. Health managers need to make data analysis in order to identify several health problems. In Brazil, these data are made available by DATASUS. Generally, they are stored in distinct and heterogeneous databases. TheLinked Data approach allow a homogenized view of the data as a unique basis. This article proposes a ontology-based model andLinked Data to integrate datasets and calculate the probability of maternal and infant death risk in order to give support in decision-making in the GISSA project.
在GISSA项目中使用关联数据整合统一系统的孕产妇和婴儿死亡风险
做出善治决策是公共卫生行政部门面临的一项持续挑战。健康管理人员需要进行数据分析,以确定几个健康问题。在巴西,这些数据由DATASUS提供。通常,它们存储在不同的异构数据库中。链接数据方法允许数据的同质化视图作为唯一的基础。本文提出了一种基于本体的模型和关联数据来整合数据集,计算母婴死亡风险概率,从而为GISSA项目的决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信