A Deep Learning-based Malware Traffic Classifier for 5G Networks Employing Protocol-Agnostic and PCAP-to-Embeddings Techniques

Georgios Agrafiotis, Eftychia Makri, Antonios Lalas, K. Votis, D. Tzovaras, Nikolaos Tsampieris
{"title":"A Deep Learning-based Malware Traffic Classifier for 5G Networks Employing Protocol-Agnostic and PCAP-to-Embeddings Techniques","authors":"Georgios Agrafiotis, Eftychia Makri, Antonios Lalas, K. Votis, D. Tzovaras, Nikolaos Tsampieris","doi":"10.1145/3590777.3590807","DOIUrl":null,"url":null,"abstract":"As 5G networks become more complex, cyber attacks targeting IoT devices are deemed a serious concern. This work proposes a novel approach to detect 5G malware traffic using a network packet preprocess toolkit and machine learning models. The system can transform packets into images or embeddings, which allows for more accurate representations that can be applied in a commercial Intrusion Detection System application in a protocol agnostic manner. The paper introduces Long Short-Term Memory Autoencoders as the preprocessing method for embeddings generation followed by a Fully-Connected network for classification purposes of a 5G-dedicated dataset. The proposed approach is efficient and adaptable to evolving threats and protocols, achieving enhanced accuracy rates in detecting 5G malware traffic. This new method can facilitate defending against 5G malware attacks and paves the way for future developments in 6G networks.","PeriodicalId":231403,"journal":{"name":"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590777.3590807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As 5G networks become more complex, cyber attacks targeting IoT devices are deemed a serious concern. This work proposes a novel approach to detect 5G malware traffic using a network packet preprocess toolkit and machine learning models. The system can transform packets into images or embeddings, which allows for more accurate representations that can be applied in a commercial Intrusion Detection System application in a protocol agnostic manner. The paper introduces Long Short-Term Memory Autoencoders as the preprocessing method for embeddings generation followed by a Fully-Connected network for classification purposes of a 5G-dedicated dataset. The proposed approach is efficient and adaptable to evolving threats and protocols, achieving enhanced accuracy rates in detecting 5G malware traffic. This new method can facilitate defending against 5G malware attacks and paves the way for future developments in 6G networks.
基于深度学习的5G网络恶意软件流量分类器,采用协议不可知和pcap -嵌入技术
随着5G网络变得越来越复杂,针对物联网设备的网络攻击被认为是一个严重的问题。这项工作提出了一种使用网络数据包预处理工具包和机器学习模型检测5G恶意软件流量的新方法。该系统可以将数据包转换为图像或嵌入,这允许更准确的表示,可以以协议不可知的方式应用于商业入侵检测系统应用程序。本文介绍了长短期记忆自动编码器作为嵌入生成的预处理方法,然后是用于5g专用数据集分类目的的全连接网络。该方法高效且适应不断变化的威胁和协议,在检测5G恶意软件流量方面实现了更高的准确率。这种新方法可以帮助防御5G恶意软件攻击,并为6G网络的未来发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信