Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations

Sanne Vrijenhoek
{"title":"Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations","authors":"Sanne Vrijenhoek","doi":"10.48550/arXiv.2304.08253","DOIUrl":null,"url":null,"abstract":"The MIND dataset is at the moment of writing the most extensive dataset available for the research and development of news recommender systems. This work analyzes the suitability of the dataset for research on diverse news recommendations. On the one hand we analyze the effect the different steps in the recommendation pipeline have on the distribution of article categories, and on the other hand we check whether the supplied data would be sufficient for more sophisticated diversity analysis. We conclude that while MIND is a great step forward, there is still a lot of room for improvement.","PeriodicalId":165601,"journal":{"name":"International Workshop on Algorithmic Bias in Search and Recommendation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Algorithmic Bias in Search and Recommendation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.08253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The MIND dataset is at the moment of writing the most extensive dataset available for the research and development of news recommender systems. This work analyzes the suitability of the dataset for research on diverse news recommendations. On the one hand we analyze the effect the different steps in the recommendation pipeline have on the distribution of article categories, and on the other hand we check whether the supplied data would be sufficient for more sophisticated diversity analysis. We conclude that while MIND is a great step forward, there is still a lot of room for improvement.
你介意吗?关于MIND数据集对新闻推荐多样性研究的思考
MIND数据集目前正在编写用于新闻推荐系统研究和开发的最广泛的数据集。这项工作分析了数据集对不同新闻推荐研究的适用性。一方面,我们分析推荐管道中不同步骤对文章类别分布的影响,另一方面,我们检查所提供的数据是否足以进行更复杂的多样性分析。我们的结论是,虽然MIND是向前迈出的一大步,但仍有很大的改进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信