Intrinsic Universality of Causal Graph Dynamics

S. Martiel, Bruno Martin
{"title":"Intrinsic Universality of Causal Graph Dynamics","authors":"S. Martiel, Bruno Martin","doi":"10.4204/EPTCS.128.19","DOIUrl":null,"url":null,"abstract":"Causal graph dynamics are transformations over graphs that capture two important symmetries of physics, namely causality and homogeneity. They can be equivalently defined as continuous and translation invariant transformations or functions induced by a local rule applied simultaneously on every vertex of the graph. Intrinsic universality is the ability of an instance of a model to simulate every other instance of the model while preserving the structure of the computation at every step of the simulation. In this work we present the construction of a family of intrinsically universal instances of causal graphs dynamics, each instance being able to simulate a subset of instances.","PeriodicalId":340847,"journal":{"name":"Machines, Computations, and Universality","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines, Computations, and Universality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.128.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Causal graph dynamics are transformations over graphs that capture two important symmetries of physics, namely causality and homogeneity. They can be equivalently defined as continuous and translation invariant transformations or functions induced by a local rule applied simultaneously on every vertex of the graph. Intrinsic universality is the ability of an instance of a model to simulate every other instance of the model while preserving the structure of the computation at every step of the simulation. In this work we present the construction of a family of intrinsically universal instances of causal graphs dynamics, each instance being able to simulate a subset of instances.
因果图动力学的内在普遍性
因果图动力学是对捕获物理学中两个重要对称性的图的转换,即因果性和同质性。它们可以等价地定义为由同时作用于图的每个顶点的局部规则诱导的连续和平移不变变换或函数。内在通用性是指一个模型的实例能够模拟该模型的所有其他实例,同时在模拟的每个步骤中保持计算结构的能力。在这项工作中,我们提出了一组内在普遍的因果图动态实例的构造,每个实例能够模拟实例的一个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信