{"title":"A novel concurrent particle swarm optimization","authors":"S. Baskar, P. N. Suganthan","doi":"10.1109/CEC.2004.1330940","DOIUrl":null,"url":null,"abstract":"In this paper, a concurrent PSO (CONPSO) algorithm is proposed to alleviate the premature convergence problem of PSO algorithm. It is a type of parallel algorithm in which modified PSO and FDR-PS algorithms are simulated concurrently with frequent message passing between them. This algorithm avoids the possible crosstalk effect of pbest and gbest terms with nbest term in FDR-PSO. Thereby, search efficiency of proposed algorithm is improved. In order to demonstrate the effectiveness of the proposed algorithm, experiments were conducted on six benchmarks continuous optimization problems. Results clearly demonstrate the superior performance of the proposed algorithm in terms of solution quality, average computation time and consistency. This algorithm is very much suitable for the implementation in parallel computer.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109
Abstract
In this paper, a concurrent PSO (CONPSO) algorithm is proposed to alleviate the premature convergence problem of PSO algorithm. It is a type of parallel algorithm in which modified PSO and FDR-PS algorithms are simulated concurrently with frequent message passing between them. This algorithm avoids the possible crosstalk effect of pbest and gbest terms with nbest term in FDR-PSO. Thereby, search efficiency of proposed algorithm is improved. In order to demonstrate the effectiveness of the proposed algorithm, experiments were conducted on six benchmarks continuous optimization problems. Results clearly demonstrate the superior performance of the proposed algorithm in terms of solution quality, average computation time and consistency. This algorithm is very much suitable for the implementation in parallel computer.