A novel concurrent particle swarm optimization

S. Baskar, P. N. Suganthan
{"title":"A novel concurrent particle swarm optimization","authors":"S. Baskar, P. N. Suganthan","doi":"10.1109/CEC.2004.1330940","DOIUrl":null,"url":null,"abstract":"In this paper, a concurrent PSO (CONPSO) algorithm is proposed to alleviate the premature convergence problem of PSO algorithm. It is a type of parallel algorithm in which modified PSO and FDR-PS algorithms are simulated concurrently with frequent message passing between them. This algorithm avoids the possible crosstalk effect of pbest and gbest terms with nbest term in FDR-PSO. Thereby, search efficiency of proposed algorithm is improved. In order to demonstrate the effectiveness of the proposed algorithm, experiments were conducted on six benchmarks continuous optimization problems. Results clearly demonstrate the superior performance of the proposed algorithm in terms of solution quality, average computation time and consistency. This algorithm is very much suitable for the implementation in parallel computer.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

In this paper, a concurrent PSO (CONPSO) algorithm is proposed to alleviate the premature convergence problem of PSO algorithm. It is a type of parallel algorithm in which modified PSO and FDR-PS algorithms are simulated concurrently with frequent message passing between them. This algorithm avoids the possible crosstalk effect of pbest and gbest terms with nbest term in FDR-PSO. Thereby, search efficiency of proposed algorithm is improved. In order to demonstrate the effectiveness of the proposed algorithm, experiments were conducted on six benchmarks continuous optimization problems. Results clearly demonstrate the superior performance of the proposed algorithm in terms of solution quality, average computation time and consistency. This algorithm is very much suitable for the implementation in parallel computer.
一种新的并行粒子群优化算法
针对粒子群算法的早熟收敛问题,提出了一种并行粒子群算法(CONPSO)。它是一种将改进的PSO算法和FDR-PS算法并行模拟,并在它们之间频繁传递消息的并行算法。该算法避免了FDR-PSO中pbest项和gbest项与nbest项可能产生的串扰效应。从而提高了算法的搜索效率。为了验证所提算法的有效性,对6个基准连续优化问题进行了实验。结果表明,该算法在求解质量、平均计算时间和一致性方面具有优异的性能。该算法非常适合在并行计算机上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信