DSP-Net: Diverse Structure Prior Network for Image Inpainting

Lin Sun, Chao Yang, Bin Jiang
{"title":"DSP-Net: Diverse Structure Prior Network for Image Inpainting","authors":"Lin Sun, Chao Yang, Bin Jiang","doi":"10.1109/ICME55011.2023.00088","DOIUrl":null,"url":null,"abstract":"The latest deep learning-based approaches have advanced diverse image inpainting task. However, existing methods limit to be aware of the structure information well, which constricts the performance of diverse generations. The intuitive representation of diversity generation is the structure change since the structure is the basis of the image. In this paper, we make full use of the structure information and propose the diverse structure prior network (DSP-Net). Specifically, there are two stages in DSP-Net to generate the diverse structure first and refine the texture next. For the diverse structure generation, we prompt the structural distribution to be similar to the Gaussian distribution to sample the diverse structural prior. With these priors, we refine the texture with a proposed propagation attention module. Meanwhile, we propose a structure diversity loss to enhance the ability of diverse structure generation further. Experiments on benchmark datasets including CelebA-HQ and Places2 indicate that DSP-Net is effective for diverse and visually realistic image restoration.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The latest deep learning-based approaches have advanced diverse image inpainting task. However, existing methods limit to be aware of the structure information well, which constricts the performance of diverse generations. The intuitive representation of diversity generation is the structure change since the structure is the basis of the image. In this paper, we make full use of the structure information and propose the diverse structure prior network (DSP-Net). Specifically, there are two stages in DSP-Net to generate the diverse structure first and refine the texture next. For the diverse structure generation, we prompt the structural distribution to be similar to the Gaussian distribution to sample the diverse structural prior. With these priors, we refine the texture with a proposed propagation attention module. Meanwhile, we propose a structure diversity loss to enhance the ability of diverse structure generation further. Experiments on benchmark datasets including CelebA-HQ and Places2 indicate that DSP-Net is effective for diverse and visually realistic image restoration.
DSP-Net:用于图像绘制的多结构先验网络
最新的基于深度学习的方法推进了不同的图像绘制任务。然而,现有的方法不能很好地识别结构信息,这限制了多代算法的性能。多样性产生的直观表现是结构的变化,因为结构是图像的基础。本文充分利用结构信息,提出了多结构优先网络(DSP-Net)。具体来说,在DSP-Net中有两个阶段,首先是生成多样化的结构,然后是细化纹理。对于多元结构生成,我们提示结构分布与高斯分布相似,以对多元结构先验进行采样。利用这些先验,我们提出了一个传播关注模块来改进纹理。同时,我们提出了一种结构多样性损失算法,进一步增强了结构多样性生成的能力。在CelebA-HQ和Places2等基准数据集上进行的实验表明,DSP-Net可以有效地实现多样化和视觉逼真的图像恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信