Towards a Competitive 3-Player Mahjong AI using Deep Reinforcement Learning

Xiangyun Zhao, S. Holden
{"title":"Towards a Competitive 3-Player Mahjong AI using Deep Reinforcement Learning","authors":"Xiangyun Zhao, S. Holden","doi":"10.1109/CoG51982.2022.9893576","DOIUrl":null,"url":null,"abstract":"Mahjong is a multi-player imperfect-information game with challenging features for AI research. Sanma, being a 3-player variant of Japanese Riichi Mahjong, possesses unique characteristics and a more aggressive playing style than the 4-player game. It is thus challenging and of research interest in its own right, but has not been explored. We present Meowjong, the first ever AI for Sanma using deep reinforcement learning (RL). We define a 2-dimensional data structure for encoding the observable information in a game. We pre-train 5 convolutional neural networks (CNNs) for Sanma’s 5 actions—discard, Pon, Kan, Kita and Riichi, and enhance the major (discard) action’s model via self-play reinforcement learning. Meowjong demonstrates potential for becoming the state-of-the-art in Sanma, by achieving test accuracies comparable with AIs for 4-player Mahjong through supervised learning, and gaining a significant further enhancement from reinforcement learning.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mahjong is a multi-player imperfect-information game with challenging features for AI research. Sanma, being a 3-player variant of Japanese Riichi Mahjong, possesses unique characteristics and a more aggressive playing style than the 4-player game. It is thus challenging and of research interest in its own right, but has not been explored. We present Meowjong, the first ever AI for Sanma using deep reinforcement learning (RL). We define a 2-dimensional data structure for encoding the observable information in a game. We pre-train 5 convolutional neural networks (CNNs) for Sanma’s 5 actions—discard, Pon, Kan, Kita and Riichi, and enhance the major (discard) action’s model via self-play reinforcement learning. Meowjong demonstrates potential for becoming the state-of-the-art in Sanma, by achieving test accuracies comparable with AIs for 4-player Mahjong through supervised learning, and gaining a significant further enhancement from reinforcement learning.
利用深度强化学习实现有竞争力的3人麻将AI
麻将是一种多人参与的不完全信息游戏,对人工智能研究具有挑战性。三马麻将是日本理一麻将的3人变体,具有独特的特点,比4人游戏更具侵略性。因此,它本身就具有挑战性和研究兴趣,但尚未被探索。我们介绍了Meowjong,这是有史以来第一个使用深度强化学习(RL)的三马人工智能。我们定义了一个二维数据结构来编码游戏中的可观察信息。我们针对Sanma的5个动作(discard, Pon, Kan, Kita和Riichi)预训练了5个卷积神经网络(cnn),并通过自玩强化学习增强了主要(discard)动作的模型。通过监督学习,Meowjong达到了与人工智能媲美的4人麻将测试精度,并从强化学习中获得了显着的进一步增强,这表明了它成为三马游戏中最先进的技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信