D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi, Marco Fiorentino, A. Davis, N. Binkert, R. Beausoleil, Jung Ho Ahn
{"title":"Corona: System Implications of Emerging Nanophotonic Technology","authors":"D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi, Marco Fiorentino, A. Davis, N. Binkert, R. Beausoleil, Jung Ho Ahn","doi":"10.1145/1394608.1382135","DOIUrl":null,"url":null,"abstract":"We expect that many-core microprocessors will push performance per chip from the 10 gigaflop to the 10 teraflop range in the coming decade. To support this increased performance, memory and inter-core bandwidths will also have to scale by orders of magnitude. Pin limitations, the energy cost of electrical signaling, and the non-scalability of chip-length global wires are significant bandwidth impediments. Recent developments in silicon nanophotonic technology have the potential to meet these off- and on-stack bandwidth requirements at acceptable power levels. Corona is a 3 D many-core architecture that uses nanophotonic communication for both inter-core communication and off-stack communication to memory or I/O devices. Its peak floating-point performance is 10 teraflops. Dense wavelength division multiplexed optically connected memory modules provide 10 terabyte per second memory bandwidth. A photonic crossbar fully interconnects its 256 low-power multithreaded cores at 20 terabyte per second bandwidth. We have simulated a 1024 thread Corona system running synthetic benchmarks and scaled versions of the SPLASH-2 benchmark suite. We believe that in comparison with an electrically-connected many-core alternative that uses the same on-stack interconnect power, Corona can provide 2 to 6 times more performance on many memory intensive workloads, while simultaneously reducing power.","PeriodicalId":190082,"journal":{"name":"2008 International Symposium on Computer Architecture","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"690","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1394608.1382135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 690
Abstract
We expect that many-core microprocessors will push performance per chip from the 10 gigaflop to the 10 teraflop range in the coming decade. To support this increased performance, memory and inter-core bandwidths will also have to scale by orders of magnitude. Pin limitations, the energy cost of electrical signaling, and the non-scalability of chip-length global wires are significant bandwidth impediments. Recent developments in silicon nanophotonic technology have the potential to meet these off- and on-stack bandwidth requirements at acceptable power levels. Corona is a 3 D many-core architecture that uses nanophotonic communication for both inter-core communication and off-stack communication to memory or I/O devices. Its peak floating-point performance is 10 teraflops. Dense wavelength division multiplexed optically connected memory modules provide 10 terabyte per second memory bandwidth. A photonic crossbar fully interconnects its 256 low-power multithreaded cores at 20 terabyte per second bandwidth. We have simulated a 1024 thread Corona system running synthetic benchmarks and scaled versions of the SPLASH-2 benchmark suite. We believe that in comparison with an electrically-connected many-core alternative that uses the same on-stack interconnect power, Corona can provide 2 to 6 times more performance on many memory intensive workloads, while simultaneously reducing power.