Decoding Energy Modeling For The Next Generation Video Codec Based On Jem

Christian Herglotz, Matthias Kränzler, André Kaup
{"title":"Decoding Energy Modeling For The Next Generation Video Codec Based On Jem","authors":"Christian Herglotz, Matthias Kränzler, André Kaup","doi":"10.1109/PCS.2018.8456244","DOIUrl":null,"url":null,"abstract":"This paper shows that the processing energy of the decoder software for the next generation video codec can be accurately estimated using a feature based model. Therefore, a model from the literature is taken and extended to account for a high amount of the newly introduced coding modes. It is shown that using a selected set of 60 features, for a large set of more than 800 coded bit streams, a mean estimation error below 5% can be reached. Using the trained parameters of the model, the energy consumption of the decoder can be analyzed in detail such that, e.g., the coding modes consuming most processing energy can be identified. The model can be used inside the encoder for decoding- energy-rate-distortion optimization to generate decoding energy saving bit streams.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper shows that the processing energy of the decoder software for the next generation video codec can be accurately estimated using a feature based model. Therefore, a model from the literature is taken and extended to account for a high amount of the newly introduced coding modes. It is shown that using a selected set of 60 features, for a large set of more than 800 coded bit streams, a mean estimation error below 5% can be reached. Using the trained parameters of the model, the energy consumption of the decoder can be analyzed in detail such that, e.g., the coding modes consuming most processing energy can be identified. The model can be used inside the encoder for decoding- energy-rate-distortion optimization to generate decoding energy saving bit streams.
基于Jem的下一代视频编解码器解码能量建模
本文表明,采用基于特征的模型可以准确估计下一代视频编解码器的解码器软件的处理能量。因此,采用文献中的模型并进行扩展,以解释大量新引入的编码模式。结果表明,选用60个特征,对于800多个编码比特流的大数据集,平均估计误差可达5%以下。利用模型的训练参数,可以详细分析解码器的能量消耗,例如,可以识别出消耗最多处理能量的编码模式。该模型可用于编码器内部的解码能量率失真优化,以产生解码节能比特流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信