Using Additive Modifications in LU Factorization Instead of Pivoting

Neil Lindquist, P. Luszczek, J. Dongarra
{"title":"Using Additive Modifications in LU Factorization Instead of Pivoting","authors":"Neil Lindquist, P. Luszczek, J. Dongarra","doi":"10.1145/3577193.3593731","DOIUrl":null,"url":null,"abstract":"Direct solvers for dense systems of linear equations commonly use partial pivoting to ensure numerical stability. However, pivoting can introduce significant performance overheads, such as synchronization and data movement, particularly on distributed systems. To improve the performance of these solvers, we present an alternative to pivoting in which numerical stability is obtained through additive updates. We implemented this approach using SLATE, a GPU-accelerated numerical linear algebra library, and evaluated it on the Summit supercomputer. Our approach provides better performance (up to 5-fold speedup) than Gaussian elimination with partial pivoting for comparable accuracy on most of the tested matrices. It also provides better accuracy (up to 15 more digits) than Gaussian elimination with no pivoting for comparable performance.","PeriodicalId":424155,"journal":{"name":"Proceedings of the 37th International Conference on Supercomputing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577193.3593731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct solvers for dense systems of linear equations commonly use partial pivoting to ensure numerical stability. However, pivoting can introduce significant performance overheads, such as synchronization and data movement, particularly on distributed systems. To improve the performance of these solvers, we present an alternative to pivoting in which numerical stability is obtained through additive updates. We implemented this approach using SLATE, a GPU-accelerated numerical linear algebra library, and evaluated it on the Summit supercomputer. Our approach provides better performance (up to 5-fold speedup) than Gaussian elimination with partial pivoting for comparable accuracy on most of the tested matrices. It also provides better accuracy (up to 15 more digits) than Gaussian elimination with no pivoting for comparable performance.
用加性修正法代替旋转法进行LU分解
密集线性方程组的直接求解通常使用部分枢轴来保证数值稳定性。但是,旋转会带来显著的性能开销,例如同步和数据移动,特别是在分布式系统上。为了提高这些求解器的性能,我们提出了一种替代枢轴的方法,其中通过加性更新获得数值稳定性。我们使用gpu加速的数值线性代数库SLATE实现了这种方法,并在Summit超级计算机上对其进行了评估。我们的方法在大多数测试矩阵上提供了更好的性能(高达5倍的加速),而不是具有部分枢轴的高斯消除。它还提供了比高斯消去法更好的精度(最多多15个数字),而没有旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信