A Practical and Scalable Privacy-preserving Framework

Nikos Avgerinos, S. D'Antonio, Irene Kamara, Christos Kotselidis, Ioannis Lazarou, T. Mannarino, G. Meditskos, Konstantina Papachristopoulou, Angelos Papoutsis, Paolo Roccetti, Martin Zuber
{"title":"A Practical and Scalable Privacy-preserving Framework","authors":"Nikos Avgerinos, S. D'Antonio, Irene Kamara, Christos Kotselidis, Ioannis Lazarou, T. Mannarino, G. Meditskos, Konstantina Papachristopoulou, Angelos Papoutsis, Paolo Roccetti, Martin Zuber","doi":"10.1109/CSR57506.2023.10224928","DOIUrl":null,"url":null,"abstract":"ENCRYPT is an EU funded research initiative, working towards the development of a scalable, practical, adaptable privacy-preserving framework, allowing researchers and developers to process data stored in federated cross-border data spaces in a GDPR-compliant way. ENCRYPT proposes an intelligent and user-centric platform for the confidential processing of privacy-sensitive data via configurable, optimizable, and verifiable privacy-preserving techniques. Research and development activities leverage, improve, and complement technologies and cryptographic schemes that represent the current state-of-the-art in the field of data-in-use protection. Hence, ENCRYPT builds on top of cutting-edge technologies such as Fully Homomorphic Encryption, Secure Multi-Party Computation, Differential Privacy, Trusted Execution Environment, GPU acceleration, knowledge graphs, and AI-based recommendation systems, making them configurable in terms of security and, most importantly, performance. The ENCRYPT framework is being designed taking into consideration the needs and preferences of relevant actors and will be validated in realistic use cases provided by consortium partners in three sectors, namely healthcare (oncology domain), fintech, and cyber threat intelligence domain. This position paper provides an overview of ENCRYPT by presenting project objectives, use cases, and technology pillars.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ENCRYPT is an EU funded research initiative, working towards the development of a scalable, practical, adaptable privacy-preserving framework, allowing researchers and developers to process data stored in federated cross-border data spaces in a GDPR-compliant way. ENCRYPT proposes an intelligent and user-centric platform for the confidential processing of privacy-sensitive data via configurable, optimizable, and verifiable privacy-preserving techniques. Research and development activities leverage, improve, and complement technologies and cryptographic schemes that represent the current state-of-the-art in the field of data-in-use protection. Hence, ENCRYPT builds on top of cutting-edge technologies such as Fully Homomorphic Encryption, Secure Multi-Party Computation, Differential Privacy, Trusted Execution Environment, GPU acceleration, knowledge graphs, and AI-based recommendation systems, making them configurable in terms of security and, most importantly, performance. The ENCRYPT framework is being designed taking into consideration the needs and preferences of relevant actors and will be validated in realistic use cases provided by consortium partners in three sectors, namely healthcare (oncology domain), fintech, and cyber threat intelligence domain. This position paper provides an overview of ENCRYPT by presenting project objectives, use cases, and technology pillars.
一个实用且可扩展的隐私保护框架
ENCRYPT是欧盟资助的一项研究计划,致力于开发可扩展、实用、适应性强的隐私保护框架,使研究人员和开发人员能够以符合gdpr的方式处理存储在联邦跨境数据空间中的数据。ENCRYPT提出了一个智能的、以用户为中心的平台,通过可配置、可优化和可验证的隐私保护技术,对隐私敏感数据进行机密处理。研究和开发活动利用、改进和补充代表使用中数据保护领域当前最先进技术的技术和加密方案。因此,ENCRYPT建立在尖端技术之上,如完全同态加密、安全多方计算、差分隐私、可信执行环境、GPU加速、知识图谱和基于人工智能的推荐系统,使它们在安全性和最重要的性能方面可配置。加密框架的设计考虑了相关参与者的需求和偏好,并将在三个领域(即医疗保健(肿瘤学领域)、金融科技和网络威胁情报领域)的联盟合作伙伴提供的实际用例中进行验证。本意见书通过介绍项目目标、用例和技术支柱,概述了ENCRYPT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信