CrowdPop

Yixuan Zhang, Bin Guo, Ouyang Yi, Tong Guo, Zhu Wang, Zhiwen Yu
{"title":"CrowdPop","authors":"Yixuan Zhang, Bin Guo, Ouyang Yi, Tong Guo, Zhu Wang, Zhiwen Yu","doi":"10.1145/3275219.3275235","DOIUrl":null,"url":null,"abstract":"The popularity prediction of mobile apps provides substantial value to a broad range of applications, ranging from app development to targeted advertising. However, most previous studies do this work by establishing regression models for impact factors, or using clustering and classification algorithms. It does not fully investigate the process of popularity evolution and the reasons behind it. In this paper, we discuss and analyze the potential predictors, especially the impact of early evolutionary patterns on future popularity. To this end, we first explore six basic evolutionary patterns and six impact factors that are closely related to app popularity. After detailed analysis, we present CrowdPop, a popularity prediction model based on the Random Forest algorithm, to quantify patterns and factors as predictors of CrowdPop. The experiment results with a real-world dataset of 126 apps indicate that, compared with baseline methods, our CrowdPop performs better in mobile app popularity prediction.","PeriodicalId":184857,"journal":{"name":"Proceedings of the Tenth Asia-Pacific Symposium on Internetware","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3275219.3275235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The popularity prediction of mobile apps provides substantial value to a broad range of applications, ranging from app development to targeted advertising. However, most previous studies do this work by establishing regression models for impact factors, or using clustering and classification algorithms. It does not fully investigate the process of popularity evolution and the reasons behind it. In this paper, we discuss and analyze the potential predictors, especially the impact of early evolutionary patterns on future popularity. To this end, we first explore six basic evolutionary patterns and six impact factors that are closely related to app popularity. After detailed analysis, we present CrowdPop, a popularity prediction model based on the Random Forest algorithm, to quantify patterns and factors as predictors of CrowdPop. The experiment results with a real-world dataset of 126 apps indicate that, compared with baseline methods, our CrowdPop performs better in mobile app popularity prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信