Boolean Networks: Coding, Linearizing and Dynamics

Qinbin He, F. Chen, Zengrong Liu
{"title":"Boolean Networks: Coding, Linearizing and Dynamics","authors":"Qinbin He, F. Chen, Zengrong Liu","doi":"10.1109/IWCFTA.2010.33","DOIUrl":null,"url":null,"abstract":"In this paper, an effective scheme is proposed for coding $n$-node Boolean networks. The scheme can uniquely designate a distinguished integer in the range from $0$ to $(2^{n\\times2^n}-1)$ for any a given Boolean network. At the same time, a linearized matrix is obtained for any a given Boolean network. The linearized matrix depends only on the information hidden in the logical table of the given network. By analyzing the linearized matrix corresponding to the given network, we can easily deal with the dynamics of the network such as the number of the fixed points and the numbers of all possible circles of different lengths, basins of attraction of all attractors, and so on.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an effective scheme is proposed for coding $n$-node Boolean networks. The scheme can uniquely designate a distinguished integer in the range from $0$ to $(2^{n\times2^n}-1)$ for any a given Boolean network. At the same time, a linearized matrix is obtained for any a given Boolean network. The linearized matrix depends only on the information hidden in the logical table of the given network. By analyzing the linearized matrix corresponding to the given network, we can easily deal with the dynamics of the network such as the number of the fixed points and the numbers of all possible circles of different lengths, basins of attraction of all attractors, and so on.
布尔网络:编码、线性化和动态
本文提出了一种有效的n节点布尔网络编码方案。对于任何给定的布尔网络,该方案可以在$0$到$(2^{n\times2^n}-1)$范围内唯一地指定一个可区分的整数。同时,对任意给定的布尔网络得到线性化矩阵。线性化矩阵只依赖于隐藏在给定网络逻辑表中的信息。通过分析给定网络对应的线性化矩阵,我们可以很容易地处理网络的动力学问题,如不动点的数量和所有可能的不同长度的圆的数量,所有吸引子的吸引盆地等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信