Recurrent least square method for estimation of varying parameters

I. Spectorsky
{"title":"Recurrent least square method for estimation of varying parameters","authors":"I. Spectorsky","doi":"10.20535/srit.2308-8893.2021.4.11","DOIUrl":null,"url":null,"abstract":"In this paper, linear object yt=a1y1+...anyn+b1u1+...bmym+δ is considered. The aim is to estimate the object parameters with an assumption that they are changing linearly: ai=ai,0+ai,1t (i=1,2,...,n), bj=bj,0+bj,1t (j=1,2,...,m), δ=δ0+δ1t, parameters ai,0, ai,1 (i=1,2,...,n), bj,0, bj,1 (j=1,2,...,m), δ0, δ1 are assumed to be constants (almost constants during long time). For this object, the recursive least square (RLS) method is generalized. Provided examples show that the obtained RLS generalization gives higher precision (in comparison with the classical RLS method) for a case when parameters change with constant (almost constant) speed during long time. When parameters change unpredictably, the precision of the proposed RLS generalization is worse then the precision of the classical method, but it is still high.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2021.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, linear object yt=a1y1+...anyn+b1u1+...bmym+δ is considered. The aim is to estimate the object parameters with an assumption that they are changing linearly: ai=ai,0+ai,1t (i=1,2,...,n), bj=bj,0+bj,1t (j=1,2,...,m), δ=δ0+δ1t, parameters ai,0, ai,1 (i=1,2,...,n), bj,0, bj,1 (j=1,2,...,m), δ0, δ1 are assumed to be constants (almost constants during long time). For this object, the recursive least square (RLS) method is generalized. Provided examples show that the obtained RLS generalization gives higher precision (in comparison with the classical RLS method) for a case when parameters change with constant (almost constant) speed during long time. When parameters change unpredictably, the precision of the proposed RLS generalization is worse then the precision of the classical method, but it is still high.
变参数估计的递归最小二乘法
本文中线性对象yt=a1y1+…anyn+b1u1+…考虑Bmym +δ。目的是在假设对象参数线性变化的情况下估计它们:ai=ai,0+ai,1t (i=1,2,…,n), bj=bj,0+bj,1t (j=1,2,…,m), δ=δ0+δ1t,参数ai,0, ai,1 (i=1,2,…,n), bj,0, bj,1 (j=1,2,…,m), δ0, δ1被假设为常数(在很长一段时间内几乎是常数)。针对这一问题,推广了递推最小二乘(RLS)方法。算例表明,对于参数长时间以恒定(几乎恒定)速度变化的情况,所得到的RLS泛化方法比经典的RLS方法具有更高的精度。当参数发生不可预测的变化时,所提出的RLS泛化方法的精度低于经典方法的精度,但仍具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信