Linked music data from global music charts

Milos Jovanovik, M. Petrov, Bojan Najdenov, D. Trajanov
{"title":"Linked music data from global music charts","authors":"Milos Jovanovik, M. Petrov, Bojan Najdenov, D. Trajanov","doi":"10.1145/2660517.2660536","DOIUrl":null,"url":null,"abstract":"Accessing data on the Web in order to obtain useful information has been a challenge in the past decade. The technologies of the Semantic Web have enabled the creation of the Linked Data Cloud, as a concrete materialization of the idea to transform the Web from a web of documents into a web of data. The Linked Data concept has introduced new ways of publishing, interlinking and using data from various distributed data sources, over the existing Web infrastructure. On the other hand, music represents a big part of the everyday life for many people in the world, and therefore, understandably, the Web contains loads of data from the music domain. Given the fact that Linked Data enables new, advanced use-case scenarios, the music domain and its users can also benefit from this new data concept. Besides being provided with additional information about their favorite artists and songs, the users can also potentially get an overview of the dynamics of the global music playlists and charts, from the aspects of artists, countries, genres, etc. In this paper, we describe the process of transforming one- and two-star music playlists and charts data from various global radio stations, into five-star Linked Data, in order to demonstrate these benefits. We also present the design of our Playlist Ontology necessary for our data model. We then demonstrate -- via SPARQL queries and a web application -- some of the new use-case scenarios for the users over the published linked dataset, which are otherwise not available over the isolated datasets on the Web.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660517.2660536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Accessing data on the Web in order to obtain useful information has been a challenge in the past decade. The technologies of the Semantic Web have enabled the creation of the Linked Data Cloud, as a concrete materialization of the idea to transform the Web from a web of documents into a web of data. The Linked Data concept has introduced new ways of publishing, interlinking and using data from various distributed data sources, over the existing Web infrastructure. On the other hand, music represents a big part of the everyday life for many people in the world, and therefore, understandably, the Web contains loads of data from the music domain. Given the fact that Linked Data enables new, advanced use-case scenarios, the music domain and its users can also benefit from this new data concept. Besides being provided with additional information about their favorite artists and songs, the users can also potentially get an overview of the dynamics of the global music playlists and charts, from the aspects of artists, countries, genres, etc. In this paper, we describe the process of transforming one- and two-star music playlists and charts data from various global radio stations, into five-star Linked Data, in order to demonstrate these benefits. We also present the design of our Playlist Ontology necessary for our data model. We then demonstrate -- via SPARQL queries and a web application -- some of the new use-case scenarios for the users over the published linked dataset, which are otherwise not available over the isolated datasets on the Web.
来自全球音乐排行榜的链接音乐数据
在过去的十年中,访问Web上的数据以获取有用的信息一直是一个挑战。语义网的技术使关联数据云的创建成为可能,这是将网络从文档网络转变为数据网络这一理念的具体实现。关联数据概念引入了在现有Web基础设施上发布、互连和使用来自各种分布式数据源的数据的新方法。另一方面,音乐代表了世界上许多人日常生活的很大一部分,因此,可以理解的是,网络包含了来自音乐领域的大量数据。考虑到关联数据可以实现新的高级用例场景,音乐领域及其用户也可以从这种新的数据概念中受益。除了提供关于他们最喜欢的艺术家和歌曲的额外信息外,用户还可以从艺术家、国家、流派等方面了解全球音乐播放列表和排行榜的动态。在本文中,我们描述了将来自各种全球广播电台的一星和二星音乐播放列表和图表数据转换为五星级关联数据的过程,以展示这些好处。我们还介绍了数据模型所必需的播放列表本体的设计。然后,我们通过SPARQL查询和一个web应用程序,为发布的链接数据集上的用户演示一些新的用例场景,否则这些用例在web上的孤立数据集上是不可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信