Parallel Sparse PLUQ Factorization modulo p

Charles Bouillaguet, Claire Delaplace, Marie-Emilie Voge
{"title":"Parallel Sparse PLUQ Factorization modulo p","authors":"Charles Bouillaguet, Claire Delaplace, Marie-Emilie Voge","doi":"10.1145/3115936.3115944","DOIUrl":null,"url":null,"abstract":"In this paper, we present the results of our experiments to compute the rank of several large sparse matrices from Dumas's Sparse Integer Matrix Collection, by computing sparse PLUQ factorizations. Our approach consists in identifying as many pivots as possible before performing any arithmetic operation, based solely on the location of non-zero entries in the input matrix. These \"structural\" pivots are then all eliminated in parallel, in a single pass. We describe several heuristic structural pivot selection algorithms (the problem is NP-hard). These algorithms allows us to compute the ranks of several large sparse matrices in a few minutes, versus many days using Wiedemann's algorithm. Lastly, we describe a multi-thread implementation using OpenMP achieving 70% parallel efficiency on 24 cores on the largest benchmark.","PeriodicalId":102463,"journal":{"name":"Proceedings of the International Workshop on Parallel Symbolic Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3115936.3115944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present the results of our experiments to compute the rank of several large sparse matrices from Dumas's Sparse Integer Matrix Collection, by computing sparse PLUQ factorizations. Our approach consists in identifying as many pivots as possible before performing any arithmetic operation, based solely on the location of non-zero entries in the input matrix. These "structural" pivots are then all eliminated in parallel, in a single pass. We describe several heuristic structural pivot selection algorithms (the problem is NP-hard). These algorithms allows us to compute the ranks of several large sparse matrices in a few minutes, versus many days using Wiedemann's algorithm. Lastly, we describe a multi-thread implementation using OpenMP achieving 70% parallel efficiency on 24 cores on the largest benchmark.
并行稀疏PLUQ分解模
在本文中,我们给出了我们的实验结果,通过计算稀疏的PLUQ分解,从Dumas的稀疏整数矩阵集合中计算几个大型稀疏矩阵的秩。我们的方法包括在执行任何算术运算之前识别尽可能多的枢轴,仅基于输入矩阵中非零项的位置。然后,这些“结构”支点将在一次通道中并行消除。我们描述了几种启发式结构枢轴选择算法(问题是NP-hard)。这些算法允许我们在几分钟内计算几个大型稀疏矩阵的秩,而使用Wiedemann的算法则需要许多天。最后,我们描述了一个使用OpenMP的多线程实现,在最大的基准测试中,在24核上实现了70%的并行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信