Facial recognition using histogram of gradients and support vector machines

J. Julina, T. Sharmila
{"title":"Facial recognition using histogram of gradients and support vector machines","authors":"J. Julina, T. Sharmila","doi":"10.1109/ICCCSP.2017.7944082","DOIUrl":null,"url":null,"abstract":"Face recognition is widely used in computer vision and in many other biometric applications where security is a major concern. The most common problem in recognizing a face arises due to pose variations, different illumination conditions and so on. The main focus of this paper is to recognize whether a given face input corresponds to a registered person in the database. Face recognition is done using Histogram of Oriented Gradients (HOG) technique in AT & T database with an inclusion of a real time subject to evaluate the performance of the algorithm. The feature vectors generated by HOG descriptor are used to train Support Vector Machines (SVM) and results are verified against a given test input. The proposed method checks whether a test image in different pose and lighting conditions is matched correctly with trained images of the facial database. The results of the proposed approach show minimal false positives and improved detection accuracy.","PeriodicalId":269595,"journal":{"name":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP.2017.7944082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Face recognition is widely used in computer vision and in many other biometric applications where security is a major concern. The most common problem in recognizing a face arises due to pose variations, different illumination conditions and so on. The main focus of this paper is to recognize whether a given face input corresponds to a registered person in the database. Face recognition is done using Histogram of Oriented Gradients (HOG) technique in AT & T database with an inclusion of a real time subject to evaluate the performance of the algorithm. The feature vectors generated by HOG descriptor are used to train Support Vector Machines (SVM) and results are verified against a given test input. The proposed method checks whether a test image in different pose and lighting conditions is matched correctly with trained images of the facial database. The results of the proposed approach show minimal false positives and improved detection accuracy.
基于直方图梯度和支持向量机的人脸识别
人脸识别广泛应用于计算机视觉和许多其他生物识别应用中,其中安全性是一个主要问题。人脸识别中最常见的问题是由于姿势变化、不同的光照条件等引起的。本文的主要研究重点是识别给定的人脸输入是否与数据库中的注册人员相对应。在at&t数据库中使用定向梯度直方图(HOG)技术进行人脸识别,并包含一个实时对象来评估算法的性能。HOG描述符生成的特征向量用于训练支持向量机(SVM),并根据给定的测试输入验证结果。该方法检查不同姿态和光照条件下的测试图像与人脸数据库的训练图像是否正确匹配。结果表明,该方法具有最小的误报率和更高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信