Improving Vietnamese WordNet using word embedding

Khang Nhut Lam, Tuan Huynh To, Thong Tri Tran, J. Kalita
{"title":"Improving Vietnamese WordNet using word embedding","authors":"Khang Nhut Lam, Tuan Huynh To, Thong Tri Tran, J. Kalita","doi":"10.1145/3342827.3342854","DOIUrl":null,"url":null,"abstract":"This paper presents a simple but effective method to improve the quality of WordNet synsets and extract glosses for synsets. We translate the Princeton WordNet and other intermediate WordNets to a target language using a machine translator, then the correct candidates are selected by applying different ranking methods: occurrence count, cosine similarity between words, cosine similarity between word embeddings and cosine similarity between Doc2Vec of sentences. Our approaches may be applicable to build WordNets in any language which has some bilingual dictionaries and at least a monolingual corpus in the target language.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a simple but effective method to improve the quality of WordNet synsets and extract glosses for synsets. We translate the Princeton WordNet and other intermediate WordNets to a target language using a machine translator, then the correct candidates are selected by applying different ranking methods: occurrence count, cosine similarity between words, cosine similarity between word embeddings and cosine similarity between Doc2Vec of sentences. Our approaches may be applicable to build WordNets in any language which has some bilingual dictionaries and at least a monolingual corpus in the target language.
利用词嵌入改进越南语WordNet
本文提出了一种简单而有效的方法来提高WordNet同义词集的质量并提取同义词集的注释。我们使用机器翻译器将普林斯顿WordNet和其他中间WordNet翻译成目标语言,然后通过使用不同的排序方法:出现次数、词之间的余弦相似度、词嵌入之间的余弦相似度和句子之间的余弦相似度来选择正确的候选词。我们的方法可能适用于在任何语言中构建WordNets,只要它有一些双语词典和至少一个目标语言的单语语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信