Clutter Reduction in Multi-dimensional Visualization of Incomplete Data Using Sugiyama Algorithm

L. Lu, M. Huang, Yi-Wen Chen, Jie Liang, Quang Vinh Nguyen
{"title":"Clutter Reduction in Multi-dimensional Visualization of Incomplete Data Using Sugiyama Algorithm","authors":"L. Lu, M. Huang, Yi-Wen Chen, Jie Liang, Quang Vinh Nguyen","doi":"10.1109/IV.2012.26","DOIUrl":null,"url":null,"abstract":"Visualization of uncertainty in datasets is a new field of research, which aims to represent incomplete data for analysis in real scenarios. In many cases, datasets, especially multi-dimensional datasets, often contain either errors or uncertain values. To address this challenge, we may treat these uncertainties as scalar values like probability. For visual representation in parallel coordinates, we draw a small \"circle\" to temporarily define a dummy vertex for an uncertain value of a data item, at the crossing point between polylines and the axis of certain dimension. Furthermore, these temporary positions of uncertainty could be permuted to achieve visual effectiveness. This feature provides a great opportunity by optimizing the order of uncertain values to tackle another important challenge in information visualization: clutter reduction. Visual clutter always obscures the visualizing structure even in small datasets. In this paper, we apply Sugiyama's layered directed graph drawing algorithm into parallel coordinates visualization to minimize the number of edge crossing among polylines, which has significantly improved the readability of visual structure. Experiments in case studies have shown the effectiveness of our new methods for clutter reduction in parallel coordinates visualization. These experiments also imply that besides visual clutter, the number of uncertain values and the type of multi-dimensional data are important attributes that affect visualization performance in this field.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Visualization of uncertainty in datasets is a new field of research, which aims to represent incomplete data for analysis in real scenarios. In many cases, datasets, especially multi-dimensional datasets, often contain either errors or uncertain values. To address this challenge, we may treat these uncertainties as scalar values like probability. For visual representation in parallel coordinates, we draw a small "circle" to temporarily define a dummy vertex for an uncertain value of a data item, at the crossing point between polylines and the axis of certain dimension. Furthermore, these temporary positions of uncertainty could be permuted to achieve visual effectiveness. This feature provides a great opportunity by optimizing the order of uncertain values to tackle another important challenge in information visualization: clutter reduction. Visual clutter always obscures the visualizing structure even in small datasets. In this paper, we apply Sugiyama's layered directed graph drawing algorithm into parallel coordinates visualization to minimize the number of edge crossing among polylines, which has significantly improved the readability of visual structure. Experiments in case studies have shown the effectiveness of our new methods for clutter reduction in parallel coordinates visualization. These experiments also imply that besides visual clutter, the number of uncertain values and the type of multi-dimensional data are important attributes that affect visualization performance in this field.
基于Sugiyama算法的不完整数据多维可视化杂波抑制
数据集的不确定性可视化是一个新兴的研究领域,其目的是将不完整的数据表示出来,以便在真实场景中进行分析。在许多情况下,数据集,特别是多维数据集,经常包含错误或不确定的值。为了应对这一挑战,我们可以将这些不确定性视为像概率一样的标量值。为了在平行坐标中进行视觉表示,我们在折线和某个维度的轴之间的交叉点上绘制一个小“圆”来临时定义一个虚拟顶点,用于数据项的不确定值。此外,这些不确定的临时位置可以排列以达到视觉效果。这个特性通过优化不确定值的顺序来解决信息可视化中的另一个重要挑战:减少混乱,从而提供了一个很好的机会。即使在小数据集中,视觉杂乱也会模糊可视化结构。本文将Sugiyama的分层有向图绘制算法应用于并行坐标可视化中,最大限度地减少了折线之间的边交叉次数,显著提高了视觉结构的可读性。实例实验表明,本文提出的方法对并行坐标可视化中的杂波减少是有效的。这些实验还表明,除了视觉杂乱之外,不确定值的数量和多维数据的类型也是影响该领域可视化性能的重要属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信