Integrated optimization of smart home appliances under energy management system

Li Jing, Zhou Xiangyu, Li Tao, Liu Yue, Wu Qinghua
{"title":"Integrated optimization of smart home appliances under energy management system","authors":"Li Jing, Zhou Xiangyu, Li Tao, Liu Yue, Wu Qinghua","doi":"10.1109/DTPI55838.2022.9998973","DOIUrl":null,"url":null,"abstract":"Smart appliance operation optimization enables consumers to control and schedule the operation time of home appliances, minimize energy costs, peak-to-average ratio (PAR), and avoid peak load demands. In this paper, a general architecture of a home energy management system is developed in a smart electricity consumption scenario, providing customers with a novel, energy-efficient scheduling method. The optimization problem is to optimize the energy saving of household appliances based on the time-of-use electricity pricing scheme. To optimize the formulated problem, this paper uses the Gurobi optimizer and compares it with the particle swarm optimization (PSO) algorithm to show its effectiveness. Rooftop photovoltaic (PV) systems are integrated with the system to show the cost-effectiveness of the equipment.","PeriodicalId":409822,"journal":{"name":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTPI55838.2022.9998973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Smart appliance operation optimization enables consumers to control and schedule the operation time of home appliances, minimize energy costs, peak-to-average ratio (PAR), and avoid peak load demands. In this paper, a general architecture of a home energy management system is developed in a smart electricity consumption scenario, providing customers with a novel, energy-efficient scheduling method. The optimization problem is to optimize the energy saving of household appliances based on the time-of-use electricity pricing scheme. To optimize the formulated problem, this paper uses the Gurobi optimizer and compares it with the particle swarm optimization (PSO) algorithm to show its effectiveness. Rooftop photovoltaic (PV) systems are integrated with the system to show the cost-effectiveness of the equipment.
能源管理系统下的智能家电集成优化
智能家电运行优化使消费者能够控制和调度家电的运行时间,最大限度地降低能源成本和峰值平均比(PAR),避免高峰负荷需求。本文提出了智能用电场景下家庭能源管理系统的总体架构,为用户提供了一种新颖的节能调度方法。优化问题是基于分时电价方案的家电节能优化问题。为了优化公式化问题,本文使用了Gurobi优化器,并将其与粒子群优化(PSO)算法进行了比较,以证明其有效性。屋顶光伏(PV)系统与该系统集成,以显示设备的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信