Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm

Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara
{"title":"Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm","authors":"Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara","doi":"10.1109/ISCBI.2017.8053549","DOIUrl":null,"url":null,"abstract":"Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.","PeriodicalId":128441,"journal":{"name":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2017.8053549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.
使用潜在语义索引和支柱算法优化K-means文本文档聚类
文档聚类是帮助管理海量数字文本文档的重要工具。本文介绍了一种新的文本文档聚类方法。首先,使用倒排索引对文本进行预处理和索引。然后使用TF-DF阈值调整索引。然后,基于TF-IDF构建术语文档矩阵。下一步使用潜在语义索引从术语文档矩阵中提取重要特征。下面的过程是通过柱子算法选择种子。基于确定的种子,进行K-Means聚类。实验结果表明,该方法优于标准K-Means文档聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信