Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods

Semih Beycimen, Dmitry I. Ignatyev, A. Zolotas
{"title":"Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods","authors":"Semih Beycimen, Dmitry I. Ignatyev, A. Zolotas","doi":"10.1109/MFI55806.2022.9913844","DOIUrl":null,"url":null,"abstract":"This paper presents a study of end-to-end methods for predicting autonomous vehicle navigation parameters. Image-based and Image & Lidar points-based end-to-end models have been trained under Nvidia learning architectures as well as Densenet-169, Resnet-152 and Inception-v4. Various learning parameters for autonomous vehicle navigation, input models and pre-processing data algorithms i.e. image cropping, noise removing, semantic segmentation for image data have been investigated and tested. The best ones, from the rigorous investigation, are selected for the main framework of the study. Results reveal that the Nvidia architecture trained Image & Lidar points-based method offers the better results accuracy rate-wise for steering angle and speed.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study of end-to-end methods for predicting autonomous vehicle navigation parameters. Image-based and Image & Lidar points-based end-to-end models have been trained under Nvidia learning architectures as well as Densenet-169, Resnet-152 and Inception-v4. Various learning parameters for autonomous vehicle navigation, input models and pre-processing data algorithms i.e. image cropping, noise removing, semantic segmentation for image data have been investigated and tested. The best ones, from the rigorous investigation, are selected for the main framework of the study. Results reveal that the Nvidia architecture trained Image & Lidar points-based method offers the better results accuracy rate-wise for steering angle and speed.
基于图像和图像与点云融合的端到端方法预测自动驾驶汽车导航参数
本文研究了端到端自动驾驶汽车导航参数预测方法。基于图像和基于图像和激光雷达点的端到端模型已经在Nvidia学习架构以及Densenet-169, Resnet-152和Inception-v4下进行了训练。对自动驾驶汽车导航的各种学习参数、输入模型和预处理数据算法(即图像裁剪、噪声去除、图像数据的语义分割)进行了研究和测试。从严格的调查中选择最好的作为研究的主要框架。结果表明,Nvidia架构训练的基于图像和激光雷达点的方法在转向角度和速度方面提供了更好的结果准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信