{"title":"Uniplanar 2-D Butler Matrix for Multibeam Arrays","authors":"Ji-wei Lian, Y. Ban, He Zhu, Y. Guo","doi":"10.1109/AMS48904.2020.9059416","DOIUrl":null,"url":null,"abstract":"A 2-D Butler matrix (BM) in uniplanar configuration for designing multibeam array antenna (MAA) is proposed using substrate integrated waveguide (SIW) technology. Firstly, a novel topology for building uniplanar 2D BM is proposed, which successfully transforms the traditional 3-D topology to a 2-D (or uniplanar) one. To realize the planarization of basic components, a novel design of eight-port hybrid couplers, is developed to transform four spatially intersected couplers to a planar structure. To address the issue of excessive path intersections, a novel SIW eight-port crossover is proposed to reduce the number of path intersections from 16 to merely 4. Using this proposed 2-D BM, a 2-D MAA with 16 (4 × 4) beams can be realized.","PeriodicalId":257699,"journal":{"name":"2020 4th Australian Microwave Symposium (AMS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Australian Microwave Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS48904.2020.9059416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A 2-D Butler matrix (BM) in uniplanar configuration for designing multibeam array antenna (MAA) is proposed using substrate integrated waveguide (SIW) technology. Firstly, a novel topology for building uniplanar 2D BM is proposed, which successfully transforms the traditional 3-D topology to a 2-D (or uniplanar) one. To realize the planarization of basic components, a novel design of eight-port hybrid couplers, is developed to transform four spatially intersected couplers to a planar structure. To address the issue of excessive path intersections, a novel SIW eight-port crossover is proposed to reduce the number of path intersections from 16 to merely 4. Using this proposed 2-D BM, a 2-D MAA with 16 (4 × 4) beams can be realized.