{"title":"Modified versions of SLIC algorithm for generating superpixels in hyperspectral images","authors":"A. Psalta, V. Karathanassi, P. Kolokoussis","doi":"10.1109/WHISPERS.2016.8071793","DOIUrl":null,"url":null,"abstract":"This paper aims at assessing the performance of the Simple Linear Iterative Clustering (SLIC) superpixel generating algorithm on hyperspectral images. Two modified versions of SLIC algorithm have been proposed. In the first, the HyperSLIC version, modifications were made to the basic algorithm in order to work with higher dimensions. In the second, the FD-SLIC version, a more complex distance measure, the fractional distance, already successfully used in the unmixing procedure was introduced. HyperSLIC was also applied on the abundance maps that are produced by the endmembers of the hyperspectral image. Algorithms have been applied on two images. Evaluation was based on visual inspection, NSE metric and “danger” maps. It has been shown that whole hyperspectral volume and fractional distance metric improves SLIC performance.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper aims at assessing the performance of the Simple Linear Iterative Clustering (SLIC) superpixel generating algorithm on hyperspectral images. Two modified versions of SLIC algorithm have been proposed. In the first, the HyperSLIC version, modifications were made to the basic algorithm in order to work with higher dimensions. In the second, the FD-SLIC version, a more complex distance measure, the fractional distance, already successfully used in the unmixing procedure was introduced. HyperSLIC was also applied on the abundance maps that are produced by the endmembers of the hyperspectral image. Algorithms have been applied on two images. Evaluation was based on visual inspection, NSE metric and “danger” maps. It has been shown that whole hyperspectral volume and fractional distance metric improves SLIC performance.
本文旨在评估简单线性迭代聚类(Simple Linear Iterative Clustering, SLIC)超像素生成算法在高光谱图像上的性能。提出了两个改进版本的SLIC算法。在第一个HyperSLIC版本中,为了处理更高的维度,对基本算法进行了修改。其次,介绍了FD-SLIC版本,一种更复杂的距离测量,分数距离,已经成功地应用于解混过程。hyperlic还应用于由高光谱图像的末端成员产生的丰度图。算法应用于两幅图像。评估基于目视检查、NSE度量和“危险”地图。研究表明,整体高光谱体积和分数距离度量提高了SLIC的性能。