COMPARE: A Taxonomy and Dataset of Comparison Discussions in Peer Reviews

Shruti Singh, M. Singh, Pawan Goyal
{"title":"COMPARE: A Taxonomy and Dataset of Comparison Discussions in Peer Reviews","authors":"Shruti Singh, M. Singh, Pawan Goyal","doi":"10.1109/JCDL52503.2021.00068","DOIUrl":null,"url":null,"abstract":"Comparing research papers is a conventional method to demonstrate progress in experimental research. We present COMPARE, a taxonomy and a dataset of comparison discussions in peer reviews of research papers in the domain of experimental deep learning. From a thorough observation of a large set of review sentences, we build a taxonomy of categories in comparison discussions and present a detailed annotation scheme to analyze this. Overall, we annotate 117 reviews covering 1,800 sentences. We experiment with various methods to identify comparison sentences in peer reviews and report a maximum F1 Score of 0.49. We also pretrain two language models specifically on ML, NLP, and CV paper abstracts and reviews to learn informative representations of peer reviews. The annotated dataset and the pretrained models are available at https://github.com/shruti-singh/COMPARE.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Comparing research papers is a conventional method to demonstrate progress in experimental research. We present COMPARE, a taxonomy and a dataset of comparison discussions in peer reviews of research papers in the domain of experimental deep learning. From a thorough observation of a large set of review sentences, we build a taxonomy of categories in comparison discussions and present a detailed annotation scheme to analyze this. Overall, we annotate 117 reviews covering 1,800 sentences. We experiment with various methods to identify comparison sentences in peer reviews and report a maximum F1 Score of 0.49. We also pretrain two language models specifically on ML, NLP, and CV paper abstracts and reviews to learn informative representations of peer reviews. The annotated dataset and the pretrained models are available at https://github.com/shruti-singh/COMPARE.
比较:同行评议中比较讨论的分类和数据集
比较研究论文是展示实验研究进展的常规方法。我们提出了COMPARE,这是一个分类和比较讨论的数据集,用于对实验深度学习领域的研究论文进行同行评审。通过对大量复习句子的深入观察,我们建立了一个比较讨论中的类别分类,并提出了一个详细的注释方案来分析这一分类。总的来说,我们注释了117篇评论,涵盖1800个句子。我们尝试了各种方法来识别同行评议中的比较句,并报告了最高F1分数为0.49。我们还对ML、NLP和简历论文摘要和评论进行了两种语言模型的预训练,以学习同行评论的信息表示。带注释的数据集和预训练模型可在https://github.com/shruti-singh/COMPARE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信