Fast head pose estimation using depth data

Ti-zhou Qiao, S. Dai
{"title":"Fast head pose estimation using depth data","authors":"Ti-zhou Qiao, S. Dai","doi":"10.1109/CISP.2013.6745249","DOIUrl":null,"url":null,"abstract":"In order to estimate head pose precisely in real time with computer vision technology, an enhanced framework using depth data and random regression forest is implemented for head pose estimation. This framework bases on head position and direction point recognition to accomplish head pose estimation. When training random forest, a decision function derived from Haar-like features is used as the binary test and this test uses some data features like Gaussian Curvature and Mean Curvature besides depth value and normal vector. We also generate a large training dataset of range images of heads by virtual structured light scanning. All votes of patches are filtered by clustering and mean shift, and then mean of them are used to estimate position of feature points. Performance evaluation shows accurate pose estimation (success rate above 90%) when running at real-time speed.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6745249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to estimate head pose precisely in real time with computer vision technology, an enhanced framework using depth data and random regression forest is implemented for head pose estimation. This framework bases on head position and direction point recognition to accomplish head pose estimation. When training random forest, a decision function derived from Haar-like features is used as the binary test and this test uses some data features like Gaussian Curvature and Mean Curvature besides depth value and normal vector. We also generate a large training dataset of range images of heads by virtual structured light scanning. All votes of patches are filtered by clustering and mean shift, and then mean of them are used to estimate position of feature points. Performance evaluation shows accurate pose estimation (success rate above 90%) when running at real-time speed.
快速头部姿态估计使用深度数据
为了利用计算机视觉技术实时准确估计头部姿态,提出了一种基于深度数据和随机回归森林的增强头部姿态估计框架。该框架基于头部位置和方向点识别来完成头部姿态估计。在训练随机森林时,使用类似haar特征的决策函数作为二值测试,该测试除了使用深度值和法向量外,还使用高斯曲率和均值曲率等数据特征。我们还通过虚拟结构光扫描生成了一个大型的头部距离图像训练数据集。通过聚类和mean shift对所有patch的投票进行过滤,然后使用它们的平均值来估计特征点的位置。性能评估显示,当以实时速度运行时,准确的姿态估计(成功率在90%以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信