Identification of Dynamic Hand Gestures with Force Myography

E. Fujiwara, M. K. Gomes, Yu Tzu Wu, C. Suzuki
{"title":"Identification of Dynamic Hand Gestures with Force Myography","authors":"E. Fujiwara, M. K. Gomes, Yu Tzu Wu, C. Suzuki","doi":"10.1109/mhs53471.2021.9767134","DOIUrl":null,"url":null,"abstract":"Hand gestures are efficient ways to perform natural human-computer interaction. However, the current approaches rely on complex and expensive systems to recognize static poses. This work proposes a force myography sensor to identify dynamic gestures. It employs a single-channel optical fiber transducer to assess the forearm muscles, producing time-varying waveforms with distinct patterns, further processed by the classification algorithm. Assuming a set of 26 Latin letters handwritten in the air, the system provided the correct discrimination with 99.2% accuracy. Nevertheless, one may generalize this method for detecting any dynamic hand gesture, enabling applications in user interfaces, assistive technologies, and serious games.","PeriodicalId":175001,"journal":{"name":"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mhs53471.2021.9767134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hand gestures are efficient ways to perform natural human-computer interaction. However, the current approaches rely on complex and expensive systems to recognize static poses. This work proposes a force myography sensor to identify dynamic gestures. It employs a single-channel optical fiber transducer to assess the forearm muscles, producing time-varying waveforms with distinct patterns, further processed by the classification algorithm. Assuming a set of 26 Latin letters handwritten in the air, the system provided the correct discrimination with 99.2% accuracy. Nevertheless, one may generalize this method for detecting any dynamic hand gesture, enabling applications in user interfaces, assistive technologies, and serious games.
用力肌图识别动态手势
手势是进行自然人机交互的有效方式。然而,目前的方法依赖于复杂和昂贵的系统来识别静态姿势。这项工作提出了一种力肌图传感器来识别动态手势。它采用单通道光纤传感器来评估前臂肌肉,产生具有不同模式的时变波形,并通过分类算法进行进一步处理。假设一组手写在空中的26个拉丁字母,该系统提供了99.2%的正确识别率。然而,人们可以将这种方法推广到检测任何动态手势,在用户界面、辅助技术和严肃游戏中启用应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信