Deep Execution - Value and Policy Based Reinforcement Learning for Trading and Beating Market Benchmarks

Kevin Dabérius, Elvin Granat, P. Karlsson
{"title":"Deep Execution - Value and Policy Based Reinforcement Learning for Trading and Beating Market Benchmarks","authors":"Kevin Dabérius, Elvin Granat, P. Karlsson","doi":"10.2139/ssrn.3374766","DOIUrl":null,"url":null,"abstract":"In this article we introduce the term \"Deep Execution\" that utilize deep reinforcement learning (DRL) for optimal execution. We demonstrate two different approaches to solve for the optimal execution: (1) the deep double Q-network (DDQN), a value-based approach and (2) the proximal policy optimization (PPO) a policy-based approach, for trading and beating market benchmarks, such as the time-weighted average price (TWAP). We show that, firstly, the DRL can reach the theoretically derived optimum by acting on the environment directly. Secondly, the DRL agents can learn to capitalize on price trends (alpha signals) without directly observing the price. Finally, the DRL can take advantage of the available information to create dynamic strategies as an informed trader and thus outperform static benchmark strategies such as the TWAP.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3374766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this article we introduce the term "Deep Execution" that utilize deep reinforcement learning (DRL) for optimal execution. We demonstrate two different approaches to solve for the optimal execution: (1) the deep double Q-network (DDQN), a value-based approach and (2) the proximal policy optimization (PPO) a policy-based approach, for trading and beating market benchmarks, such as the time-weighted average price (TWAP). We show that, firstly, the DRL can reach the theoretically derived optimum by acting on the environment directly. Secondly, the DRL agents can learn to capitalize on price trends (alpha signals) without directly observing the price. Finally, the DRL can take advantage of the available information to create dynamic strategies as an informed trader and thus outperform static benchmark strategies such as the TWAP.
深度执行-基于价值和策略的强化学习,用于交易和击败市场基准
在本文中,我们介绍了利用深度强化学习(DRL)实现最佳执行的术语“深度执行”。我们展示了两种不同的方法来解决最优执行问题:(1)深度双q网络(DDQN),一种基于价值的方法;(2)基于策略的近端策略优化(PPO),用于交易和击败市场基准,如时间加权平均价格(TWAP)。研究表明,首先,DRL可以通过直接作用于环境而达到理论推导的最优。其次,DRL代理可以在不直接观察价格的情况下学习利用价格趋势(alpha信号)。最后,作为知情的交易者,DRL可以利用可用信息创建动态策略,从而优于静态基准策略,如TWAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信