A Comparison of Regression Models for Prediction of Graduate Admissions

Mohan S Acharya, Asfia Armaan, Aneeta S Antony
{"title":"A Comparison of Regression Models for Prediction of Graduate Admissions","authors":"Mohan S Acharya, Asfia Armaan, Aneeta S Antony","doi":"10.1109/ICCIDS.2019.8862140","DOIUrl":null,"url":null,"abstract":"Prospective graduate students always face a dilemma deciding universities of their choice while applying to master’s programs. While there are a good number of predictors and consultancies that guide a student, they aren’t always reliable since decision is made on the basis of select past admissions. In this paper, we present a Machine Learning based method where we compare different regression algorithms, such as Linear Regression, Support Vector Regression, Decision Trees and Random Forest, given the profile of the student. We then compute error functions for the different models and compare their performance to select the best performing model. Results then indicate if the university of choice is an ambitious or a safe one.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Prospective graduate students always face a dilemma deciding universities of their choice while applying to master’s programs. While there are a good number of predictors and consultancies that guide a student, they aren’t always reliable since decision is made on the basis of select past admissions. In this paper, we present a Machine Learning based method where we compare different regression algorithms, such as Linear Regression, Support Vector Regression, Decision Trees and Random Forest, given the profile of the student. We then compute error functions for the different models and compare their performance to select the best performing model. Results then indicate if the university of choice is an ambitious or a safe one.
研究生招生预测的回归模型比较
未来的研究生在申请硕士课程时总是面临着选择大学的两难境地。虽然有很多预测因素和咨询机构可以指导学生,但它们并不总是可靠的,因为决定是基于过去的录取情况。在本文中,我们提出了一种基于机器学习的方法,在该方法中,我们比较了不同的回归算法,如线性回归、支持向量回归、决策树和随机森林,并给出了学生的概况。然后,我们计算不同模型的误差函数,并比较它们的性能以选择性能最好的模型。结果会显示你选择的大学是一所雄心勃勃的大学还是一所安全的大学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信