CUDA-Based Linear Solvers for Stable Fluids

G. Amador, A. Gomes
{"title":"CUDA-Based Linear Solvers for Stable Fluids","authors":"G. Amador, A. Gomes","doi":"10.1109/ICISA.2010.5480268","DOIUrl":null,"url":null,"abstract":"In the field of computer graphics, physically-based fluids simulations (i.e., simulations that solve the equations that govern fluids behavior) are performed using, among others, Stam's stable fluids method. This method requires the solution of two sparse linear systems that can be solved using an iterative solver (e.g., Jacobi, Gauss-Seidel, conjugate gradient, etc.). Focusing on real-time 3D applications, we provide and analyze the performance of the parallel GPU-based (using CUDA) algorithms of the Jacobi, Gauss-Seidel, and conjugate gradient solvers.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the field of computer graphics, physically-based fluids simulations (i.e., simulations that solve the equations that govern fluids behavior) are performed using, among others, Stam's stable fluids method. This method requires the solution of two sparse linear systems that can be solved using an iterative solver (e.g., Jacobi, Gauss-Seidel, conjugate gradient, etc.). Focusing on real-time 3D applications, we provide and analyze the performance of the parallel GPU-based (using CUDA) algorithms of the Jacobi, Gauss-Seidel, and conjugate gradient solvers.
基于cuda的稳定流体线性求解器
在计算机图形学领域,基于物理的流体模拟(即,求解控制流体行为的方程的模拟)使用斯塔姆的稳定流体方法等进行。该方法需要两个稀疏线性系统的解,可以使用迭代求解器(如Jacobi、Gauss-Seidel、共轭梯度等)求解。专注于实时3D应用,我们提供并分析了基于并行gpu(使用CUDA)的Jacobi, gaas - seidel和共轭梯度求解器算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信