DCNN-Based Multipath Channel Prediction Model in Mobile Communication Environment

Kazuki Takahashi, T. Imai, M. Hirose
{"title":"DCNN-Based Multipath Channel Prediction Model in Mobile Communication Environment","authors":"Kazuki Takahashi, T. Imai, M. Hirose","doi":"10.1109/ISAP53582.2022.9998784","DOIUrl":null,"url":null,"abstract":"Nowadays, the next generation mobile communication systems (Beyond 5G / 6G) have been actively investigated all over the world, and we have proposed the radio propagation loss prediction model with deep convolutional neural networks (DCNN) to improve the prediction accuracy. In our model, the features which needed for propagation loss prediction are automatically extracted from image maps. So, it is expected that our proposed model can also predict multipath channels. In this paper, we extend our proposed DCNN-based model to multipath channel prediction and clarify its performance.","PeriodicalId":137840,"journal":{"name":"2022 International Symposium on Antennas and Propagation (ISAP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Antennas and Propagation (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP53582.2022.9998784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the next generation mobile communication systems (Beyond 5G / 6G) have been actively investigated all over the world, and we have proposed the radio propagation loss prediction model with deep convolutional neural networks (DCNN) to improve the prediction accuracy. In our model, the features which needed for propagation loss prediction are automatically extracted from image maps. So, it is expected that our proposed model can also predict multipath channels. In this paper, we extend our proposed DCNN-based model to multipath channel prediction and clarify its performance.
移动通信环境下基于dcnn的多径信道预测模型
目前,下一代移动通信系统(超5G / 6G)在世界范围内得到了积极的研究,为了提高预测精度,我们提出了基于深度卷积神经网络(DCNN)的无线电传播损耗预测模型。在我们的模型中,从图像映射中自动提取传播损失预测所需的特征。因此,我们期望我们的模型也能预测多径信道。在本文中,我们将提出的基于dcnn的模型扩展到多径信道预测,并阐明了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信