Digital Image Segmentation of Chicks Flock Using Clustering Method on Fog Computing Network

Wiwit Agus Triyanto, Arifin Setiawan, Aji Setiawan, B. Warsito, A. Wibowo
{"title":"Digital Image Segmentation of Chicks Flock Using Clustering Method on Fog Computing Network","authors":"Wiwit Agus Triyanto, Arifin Setiawan, Aji Setiawan, B. Warsito, A. Wibowo","doi":"10.1109/ICITE54466.2022.9759871","DOIUrl":null,"url":null,"abstract":"Image segmentation is one of the most widely used techniques for correctly classifying image pixels in decision-oriented applications. There are various image segmentation methods such as threshold, edge, cluster, and neural networks. Among the various methods, the most effective is the clustering method. In this study, we describe image preprocessing, a segmentation process using clustering methods using K-Means and Fuzzy C-Means algorithms in a nebula network. The evaluation results show that the segmentation process of chicken flock images in the fog network uses a clustering method, and the Fuzzy C-Means algorithm can produce better segmentation than K-Means. The results of this step can be used in further studies, namely to monitor the activity of flocks of chickens in fog nets.","PeriodicalId":123775,"journal":{"name":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE54466.2022.9759871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image segmentation is one of the most widely used techniques for correctly classifying image pixels in decision-oriented applications. There are various image segmentation methods such as threshold, edge, cluster, and neural networks. Among the various methods, the most effective is the clustering method. In this study, we describe image preprocessing, a segmentation process using clustering methods using K-Means and Fuzzy C-Means algorithms in a nebula network. The evaluation results show that the segmentation process of chicken flock images in the fog network uses a clustering method, and the Fuzzy C-Means algorithm can produce better segmentation than K-Means. The results of this step can be used in further studies, namely to monitor the activity of flocks of chickens in fog nets.
基于雾计算网络聚类方法的雏鸡群数字图像分割
在面向决策的应用中,图像分割是对图像像素进行正确分类的最广泛的技术之一。有各种各样的图像分割方法,如阈值、边缘、聚类和神经网络。在各种方法中,最有效的是聚类方法。在本研究中,我们描述了图像预处理,即在星云网络中使用K-Means和模糊C-Means算法使用聚类方法进行分割的过程。评价结果表明,雾网络中鸡群图像的分割过程采用聚类方法,模糊C-Means算法的分割效果优于K-Means算法。这一步骤的结果可用于进一步的研究,即监测雾网中鸡群的活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信